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Abstract. We analyse the local and global structure of time singularities for a class of quasi-
integrable Hamiltonian systems in the Arnold–Liouville sense. We show that there is good
agreement between the numerically observed local behaviour of the solutions and the perturbative
scheme we produce using asymptotic approximations of the solution around the singularities.
We also prove the convergence of the Psi-series associated to the movable singularities of the
systems considered. We also propose a simple model in order to analyse the global structure of
the singularities in the directions of exponential growth of the potential in time.

1. Introduction

In this paper we consider quasi-integrable Hamiltonian systems with Hamiltonians of the
following form:

H(q, p, t) = p2

2
+ V(q) + εR(q, t) (1.1)

whereV andR are algebraic inq andR is entire int . We also suppose that degV > degR.
q andp are chosen to be complex.

The general solution of the nonlinear time-dependent equations associated to (1.1) may
be locally represented as psi series [11], possessing movable singularities. In the case of the
Duffing equation (see [3, 4, 8, 9, 18]) the appearance of clusters of movable singularities has
been evidenced numerically near a movable critical point. In particular, these authors have
considered the psi series associated to the general integrals of the Duffing system in order
to give a justification of the numerical behaviour. Psi series have also been considered in
the case of other systems (see [6, 13, 16, 17]).

We are interested here in the asymptotic behaviour in time near a movable singularity
with arbitrary degree ofV in (1.1).

Whenε = 0 the global structure of the movable singularities ofq(t) is, in general, non-
trivial, provided the degV is sufficiently high. In fact, when degV 6 4 the movable time
singularities are non-critical poles (the system is actually also Painlevé-integrable [7, 12, 15]
in this case) and the global structure of the Riemann sheets may be described quite easily.
When degV > 4, the movable singularities are algebraic in nature and, in the generic case
critical; that is, they produce an infinite sheeted Riemann foliation in the large which cannot
actually be uniformly described. In both cases, the singularities, whether critical or not, are
isolated.
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When we add a time-analytic perturbation (ε 6= 0), the movable time singularities of
q(t) still have locally the same polar or algebraic dominant part as in the corresponding
unperturbed case. This follows from the assumption degV > degR. Their nature, instead,
is logarithmic for a generic time-analytic perturbation, as can be shown by expressing locally
q(t) via a psi series.

Numerically, if we start to integrate the differential equations associated with (1.1), along
paths which turn around one of such singularities, we continuously change the Riemann
sheet and observe new singularities arising and disappearing at each turn (see figures 3(b),
4(b), 5(b), 6(a) and 7(a)).

In order to explain such a behaviour we make a certain ansatz about the dominant terms
in the psi series associated toq(t) in the neighbourhood of a movable critical singularity.
We then use the Painlevé α-technique where, in our approximation,α is time-dependent,
and we give a constructive asymptotic approximation of the solution.

Such asymptotic approximation can be interpreted as the summation of the psi series
taking its terms in an appropriate order. So the main problem is whether such a procedure
is justified, that is whether the psi series converges absolutely. Indeed, for simplicity of
notation, we consider a subclass of systems of the form (1.1) and prove that such series
converge absolutely in convenient sectors of the complex time plane, so that the method
proposed here is self-consistent. We do not consider here the optimal convergence ratio, but
we are convinced that the maximal radius of convergence is connected with the appearance
of the first singularity of the ‘cluster’.

Concerning the convergence of psi series solution [10, 11, 19], recently, Melkonian and
Zypchen [14] have shown the convergence of the psi series in the case of the Duffing
equation and the Lorenz system.

In particular, the asymptotic analysis proposed here shows that the Hamiltonian system
(1.1) may be conjugated with a time-independent one via a transformation which conjugates
the local singularity structure of (1.1) to the global singularity structure of the corresponding
time-independent system. Of course, this allows one to predict the local singularity structure
quite accurately only when the movable singularities of the underlying time-independent
system are non-critical (degV 6 4) or produce only finite branching (like in the second
example of section 4).

We also consider numerically the time singularity structure when the time-dependent
perturbation in (1.1) grows exponentially in a certain complex time direction. In these cases,
if we numerically integrate the equations of motion along such particular time direction,
we see the appearance of singularities which look as if they accumulate on the integration
path, forming a sort of ‘barrier’ for the singularities (see figures 1, 2, 3(a), 4(a), 5(a), 8
and 9). Such ‘peaks’ have already been observed in the case of the Duffing system with
a time-dependent term of the form sin(ωt)—which is a particular example in the class we
consider here—in [4, 8, 18].

We are convinced that such peaks are due to the exponential growth of the potential
along the integration path. In order to support this conjecture, we consider here the simplest
model with degV = 3, which is integrable in suitable coordinates. In particular, using this
model, we can prove that the singularities approach the integration path at a sufficiently
low speed. This allows for analytic continuation of the solution in the direction in which
the potential explodes.

Finally, we have also started a numerical investigation of the structure of such chimneys
for a different example with degV = 3, in order to give lower bounds to the rate of
approximation of the singularities to the integration path.
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Figure 1. We plot the global singularity structure in time for the differential equation
q̈ = q − (1 + ε1 exp(bt)/(1 + exp(bt)))(1 + ε2 sin(ωt))q2, where ε1 = 0.01, ε2 = 0.001,
b = 0.3, ω = 2π , q(0) = 0.5, q̇(0) = 0.0, along path starting fromt = 0 and moving parallel
to real and imaginary axes. The singularities are identified as double poles by ATOMFT; notice
that the perturbation is asymptotically periodic int .

Numerical and asymptotic analyses for large times give compatible bounds on the rate
of approximation of the singularities to their asymptotes. In particular, in the examples
considered here, the singularities approach the integration path roughly atn−1 speed, where
n is the index position of the singularity. So the singularities approach the path of integration
accumulating on it in a way which could allow for infinite time-analytical continuation of
the solutions in the directions of exponential growth of the potential. We think that the rate
of accumulation of singularities depends on degV 6= 3.

In section 2 and in appendix A, we present our asymptotic model for the local singularity
clusters around a movable critical point. In section 3 and in appendix B, we prove the
convergence of the psi series. In section 4 and in appendix C, we present an example and
apply the perturbative asymptotic techniques to it.

In section 5 we consider the time singularity structure for large times in the directions of
exponential growth of the potential; we present an asymptotic model for a class of examples
and compare it with numerical simulations.

In section 6 we present our conclusions from the analysis in the previous sections.

2. The Painlev́e α-method and an asymptotic approximation near the movable
singularities

In this section we consider local approximations of the perturbed differential equation
associated to the Hamiltonian (1.1) defined in the introduction

q̈ = −V ′(q) + εR′(q, t)
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Figure 2. Same as in figure 1, for the differential equationẍ = x(ε sin(πt) − 1)x + x4 where
ε = 0.01, x(0) = 0.5, ẋ(0) = 0. and the integration path is along the real time axis up to
t = 1.0 and then vertical. The singularities are recognized as algebraic of order−2/3 by the
program and lie on the same Riemann sheet.

where a prime denotes differentiation with respect to theq variable. Since our analysis is
local, we may rescale the time variable and consider the case where

q̈ = ql + W(q, t) = ql +
l−1∑
j=0

(cj + εFj (t))q
j (2.1)

with ε, cj ∈ R andFj entire functions.
In particular, we look for an approximation of (2.1) around a generic movable critical

point t0, in order to describe locally the properties of the solutions and to construct a model
for interpreting theoretically the local singularity structure observed numerically. In order
to achieve this we apply the so-called Painlevé α-method assuming that in our asymptotic
approximation, which we introduce below,α = (log(t − t0))

−1/r . Numerically (see figures 6
and 7) there is good agreement between the singularities computed by direct integration of
(2.1) and those predicted by our local asymptotic approximation.

In appendix A we briefly recall the Painlevé α-method algorithm and show that
logarithmic singularities are expected in the solutions of the transformed equations.

Let us consider the case in which the condition of appendix A,Pk̄(0) ≡ 0, is not
satisfied at the resonance index term; then the local nature of the singularities is logarithmic
and the following psi series produces a correct set of conditions for the formal solution of
equation (2.1):

q(t) =
∑
k,j>0

akj (t − t0)
i(k)+m[(t − t0)

r log(t − t0)]
j (2.2)
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Figure 3. We consider the global (a) and local (b) singularity structure in time of the solution
of ẍ = x(ε sin(πt)−1)+ εx2 sin(t)+x5 whereε = 0.01 and with initial conditionsx(0) = 0.5,
ẋ(0) = 0. The singularities in (a) lie on the same Riemann sheet and are obtained by integrating
the equation along the real line up to the pointt = 5.0 and then moving along the imaginary
time axis. In (b) we show the local singularity structure associated to the movable critical point
t0 = (5.5330, 1.9833) after projection on the time complex plane. They are obtained by turning
20 times aroundt0. In both cases the singularities are identified as algebraic of order− 1

2 by
ATOMFT.
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Figure 4. The same as in figure 3 in the case of equationq̈ = q − (1 + ε1 exp(bt) + ε2t)q
2,

whereb = 0.3, ε1 = 0.01, ε2 = 2πε1, q(0) = 0.5, q̇(0) = 0 In (a) we first move along the
imaginary axis and then parallel to the real one. In (b) t0 = (3.3187, 3.2830). The singularities
are identified as double poles by the ATOMFT program. Notice that in this case the time-
dependence is not periodic.



Time singularities in a class of Hamiltonians 149

Figure 5. The same as in figure 4 in the case of equationq̈ = q − (1 + ε exp(bt))q2, where
b = 0.3, ε = 0.01, q(0) = 0.5, q̇(0) = 0. In (b) t0 = (3.4503, 3.4562). The singularities are
identified as double poles by the ATOMFT program. Notice that the potential has imaginary
period.
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Figure 6. We compare (a) the local singularity structure obtained numerically with ATOMFT
as in figure 4 for the pointt0 = (1.9746, 2.0882) relative to equation̈x = x(ε sin(πt)−1)+x2,

whereε = 0.01, x(0) = 0.5, ẋ(0) = 0, with the α-asymptotic perturbation expansion at order
0 (b). The singularities are projected in both cases to the complex plane and are double poles.
The conjugated system of order 0 is Painlevé integrable.
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Figure 7. The same as in figure 6, fort0 = (0.94504, 2.0563) relative to equationẍ =
x(ε sin(πt)+ 1)+ x5, whereε = 0.01, x(0) = 0.5, ẋ(0) = 0, computed with ATOMFT (a) and
predicted by theα-asympotic periodic expansion at order 0 (b). The singularities are projected
to the complex time plane and are algebraic of order−1/2; notice that the conjugated system
of order 0 is integrable in the generalized Painlevé sense, since its solutions are square roots of
meromorphic functions.
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Figure 8. In (a) we superpose the singularity clustering for equationẍ = x(ε sin(πt) − 1) + x2

wherex(0) = 0.5, ẋ(0) = 0, for ε = 10−4(= highest ‘peak’), 10−3, 10−2, 0.1, 1(= lowest)
and integration path along the real time axis up tot = 1 and the vertical. The points shown
in this picture were used for obtaining table 1. In (b) we plot the complex time singularity
clustering for equation̈x = (ε sin(πt) − 1)x + x2, whereε = 0.01, x(0) = 0.5, ẋ(0) = 0
along the path moving along the real time axis up tot = 1, then turning around the singularity
t0 = (0.9861, 2.1008) 20 times and then moving up vertically with<(t) = 1.
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Figure 9. We compare the global singularity structure associated toq̈ = q − (1 + ε exp(bt))q2

(a) and to q̈ = q − ε exp(bt)q2 (b), whereε = 0.01, b = 5, q(0) = 0.5, q̇(0) = 0. We first
integrate the equation along the imaginary axis up tot1 = iπ/60 and then parallel to the real
axis. Notice that (b) is conjugated to an integrable model using equation (5.2).
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where

m = − 2

l − 1
r = 2

l + 1

l − 1
i(k) =


k

l − 1
if l even

2k

l − 1
if l odd.

(2.3)

We now consider an asymptotic approximation ofq(t) in a neighbourhood of a movable
singularity, and relate such approximation to the set of formal solutions obtained using
the Painlev́e α-method. In particular, we show that the asymptotic equations are exactly
those generated by the formalα-method expansion, and so, examining the solutions, we are
able to predict the generation of clusters of singularities with logarithmic-type structures, as
expected numerically, already at zeroth perturbative order.

Let us denote

t − t0 = ρ exp(iθ).

We perform the numerical integration of equation (2.1) in the limitρ → 0, θ → ∞. In
particular, we may suppose thatθ → ∞ sufficiently fast (in a sense specified below) so
that in expansion (2.2) the terms withk = 0 are the dominant ones. (In [8] using a different
approach the authors consider as dominant thek = 0 terms for the Duffing example.)

Let us denote

α = [log (t − t0)]
− 1

r T = α−1(t − t0) = (t − t0) log
1
r (t − t0) (2.4)

wherer is given by (2.3). We now substitute the Painlevé α-expansion into (2.1), withα
andT as above. Then

q(t) ≈ αm
∑
k>0

α− i(k)

r q(k)(T ) (2.5)

whereq(k) are the solutions of the Painlevé α-method (see appendix A). We require that,
in the limit

|T | → 0 |T | � |t − t0| (2.6)

the terms in (2.5) are dominant. This asymptotic approximation ofq(t) is valid whenθ

goes to infinity sufficiently fast so that, when we insert (2.5) into (2.1), we can consider the
terms containing derivatives ofα as higher-order corrections at each step. In particular, it
is sufficient that

θ > ρ
−2r
r+2 . (2.7)

Notice also that (2.6) and (2.7) form a set of compatible conditions.
Let us now consider the relations between the local formal expansion ofq(t) in (2.2)

and the one given in (2.5). Let us start from the termq(0), which satisfies the zeroth-order
Painlev́e equation

d2q(0)

dT 2
− (q(0)(T ))l = 0. (2.8)

SinceT may be chosen to be as small as we like, we may consider the local expansion of
q(0) aroundT = 0 and we get

q(0)(T ) =
∑
j>0

c
(0)
j T i(j)+m. (2.9a)

If we insert(2.9a) into (2.5) we have that

c
(0)
j = a0,j j > 0 (2.10a)
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since

q(t) ≈ (log(t − t0))
1

l+1 q(0)((t − t0) log
1
r (t − t0))

= a00(t − t0)
m + a01(t − t0)

m+r + h.o.t..

We have obtained an explicit relation between the coefficients of the local formal
expansion (2.2) and the coefficients of the formal solution of (2.8). This last equation
admits a first integral which is

1

2

dq(0)

dT

2

− 1

l + 1
(q(0))l+1 = m(r + 1)a00a01. (2.11)

In particular, from(2.10a) and (2.11), we get the following equation:

c(0)
r = a0,1. (2.12)

This relation means that we are conjugating the local expansion (2.2) around the movable
critical point t0, to the global solution of (2.11), since (2.12) fixes the energy level of (2.11).
Then, if we pull back the singularity structure in theT plane associated toq(0), using (2.4),
we get an asymptotic approximation of the local structure ofq(t) (see figures 6(b) and
7(b)). In section 4, we will analyse an example in order to clarify these ideas.

Let us now consider the terms in (2.5) withk > 1, again in the asymptotic limit (2.6),
(2.7). In order to achieve this, we insert the corresponding coefficients in the formal local
expansion ofq(k)(T ), particular solutions of the Painlevé α-equations,

q(k)(T ) =
∑
j>0

c
(k)
j T i(j)+m+kr k > 1 (2.9b)

in q(t). Then, using the properties of the solutions of the Painlevé α-method, equating the
coefficients in (2.2) and (2.7), it is easy to check that

c
(k)
j = ck,j j > 0 k = 1, . . . , k̄ wherei(k̄) = r. (2.10b)

In fact as soon ask > k̄, new terms containing the logarithm appear (see appendix A) and,
in order to compensate them, we should take into account the terms containing derivatives
of α which we have neglected so far.

The good agreement between the singularity positions predicted by the asymptotic
expansion explained here and those numerically computed starting from (2.1) suggest that
(2.5) has to be considered as the first step in the local asymptotic expansion of the solutions
of (2.1) in the neighbourhood of a critical singularity. As shown in the figures 6 and 7, the
local singularity structure of these examples is highly non-trivial and the complicated local
structure is well described by the termq(0)((t − t0) log

1
r (t − t0)).

3. Convergence of the psi series

In this section (and in appendix B), for simplicity of notations, we consider the case in
which equation (2.1) reduces to

q̈ = ql +
l−1∑
j=0

cjq
j + ε(F0(t) + F1(t)q) (3.1)

and we show that the corresponding psi series (see equation (2.2)) actually converges in
certain sectors of the complex planet .

In the more general case of equation (2.2) the estimates we give here are still valid
except that we have to estimate more carefully the coefficients in the Taylor expansion of
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the entire functionsFj (t). Indeed, we estimate from above the coefficientsf
(j)
n in the Taylor

expansions of the entire functionsFj (t), j = 0, 1, with an appropriate constantK. Such
estimates are not sufficient in order that the proof be self-consistent in the general case of
(2.2) and it is sufficient to estimate such terms withKn−d with d > 1.

In any case, our estimates here are not optimal, since our main concern is to show the
consistency of the asymptotic approximation proposed in the previous section. Indeed, since
the psi series converges, we may resume its terms in the way proposed in the above section.
This is of course not a proof of the fact that there are actually secondary singularities on
the boundary of the convergence domain, but a first step towards it.

Let us denote

τ = (t − t0)
β

l−1 z = log(t − t0) µ = − 2

β
, r̄ = 2(l + 1)

β
(3.2)

whereβ = 1 if l is even,β = 2 elsewhere. We start with the casez real. Then (2.2)
becomes

q(t) =
∑
N>0

hN(z)τN+µ (3.3)

where

hN(z) =
∑

k+r̄j=N

akj z
j (3.4)

is a polynomial of degree [N/r̄]. Of course

q̇(t) =
∑
N>0

gN(z)τ
N+µ− (l−1)

β (3.5)

where

gN(z) = dhN

dz
+ β(N + µ)

(l − 1)
hN(z).

When we substitute (3.3) and (3.5) in (2.1), forN = 0 we get

µβ

l − 1
h0 = g0

(
µβ

l − 1
− 1

)
g0 = hl

0

so thath0 = a00, g0 = − 2
(l−1)

h0, as expected. IfN > 1 we get the recursive relations

h′
N + β

l − 1
(N + µ)hN − gN = 0

g′
N + β

l − 1

(
N + µ − l − 1

β

)
gN − 2l(l + 1)

(l − 1)2
hN = P̃N

(3.6)

where

P̃N =
∑

k1+···+kl=N
ki 6=N,i=1,...,l

l∏
i=1

hki
+

l−1∑
j=0

cj
∑

k1+···+kj =
N+(l−j)µ

j∏
i=1

hki
+ f

(0)
N+lµ

l−1 β
+

∑
l−1
β

k0+k1=
N+(l−1)µ

f
(1)
k0

hk1. (3.7)

Equation (3.6) may be rewritten in a compact form as(
h′

n

g′
N

)
+ AN

(
hN

gN

)
=

(
0

P̃N

)
(3.8)

where

AN =
( β

l−1(N + µ) −1
β

l−1(N + µ − l−1
β

) − 2l(l+1)

(l−1)2

)
. (3.9)
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Notice that (3.8) becomes equation (A.9) if we considerT as function ofz. The diagonal
form of AN is DN = diag[βN

l−1 + 1,
βN

l−1 − r]. The eigenvalues are both positive ifN > r̄.
The matrix which transformsAN to DN is

Q =
(

1 l−1
3l+1

− l+1
l−1

2l
3l+1

)
(3.10)

so that (
hn

gN

)
=

∫ z

−∞
exp{AN(ξ − z)}

(
0

P̃N (ξ)

)
dξ

=
∫ z

−∞
Q exp{DN(ξ − z)}Q−1

(
0

P̃N (ξ)

)
dξ N > r̄. (3.11)

We now need an estimate on the growth ofhN and gN as functions ofN and z. Let us
choose the following norm for vectors and matrices:

||ai,j || = max
i,j

|aij |.

Then ||Q|| = ||Q−1|| = l+1
l−1, || exp{DN(ξ − z)}|| = exp{( βN

l−1 − r)(ξ − z)} and, using (3.11),
we get

max{|hN |(z), |gN |(z)} 6
(

l + 1

l − 1

)2

∫ z

−∞
exp

{(
βN

l − 1
− r

)
(ξ − z)

}
|P̃N (ξ)| dξ N > r̄, z < 0. (3.12)

In appendix B we prove that for anyγ ∈]γ ∗, 1[, whereγ ∗ = l−2
l−1, there exist constants

0 < M < 1 andK > 1 such that

max{|hN |(z), |gN |(z)} 6 M
(K − Kz)

N
r̄

(N + 1)γ
∀N > 1, ∀z < 0. (3.13)

Then it easily follows that the series (3.3) converges absolutely for(K − Kz)
1
r̄ τ < 1 or

equivalently for

1 − z <
exp(−rz)

K
. (3.14)

There exists a uniquēz < 0 such that equality holds in (3.14) which determines the
maximum convergence radius of (2.2).

Let us now consider complex convergence. In analogy with [14], let us define the sets

Gν = {t ∈ C : t − t0 = ρeiθ , ρ > 0, ν < θ < ν + 2π}. (3.15)

If t ∈ Gν, then

q(t) =
∑
N>0

[N/r̄]∑
j=0

b
(N)
j logj |t − t0|τN+µ (3.16)

where

b
(N)
j =

[N/r̄]∑
k=j

aN−r̄k,k

(
k

j

)
(iθ)k−j .

Since the form of the series is unaltered, the convergence proof is again the same and it
is possible to show absolute convergence in sectors of theτ -complex plane of the form
τ = |τ |eiφ = ρ

β

l−1 eiφ , where νβ

l−1 < φ <
νβ

l−1 + 2πβ

l−1 .
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4. An example

In this section and in appendix C, we give some detailed computations for the following
equation:

q̈ + q(1 + εF (t)) − q2 = 0. (4.1)

Notice that the movable singularities for the unperturbed system(ε = 0) are double poles.
The same kind of analysis is also possible for the following equation:

q̈ + q(1 + εF (t)) − q5 = 0 (4.2)

for which the movable singularities are algebraic of order− 1
2. Indeed, in this second case,

the corresponding zero Painlevé equation has a general solution which is the square-root of
a meromorphic function, according to a theorem by Briot and Bouquet.

Figures 6 and 7, refer to the case whereF(t) = sin(�t), but analogous results may also
be shown for more complicated equations like

q̈ + q(1 + ε sin(πt)) + εq2 sin(t) − q5 = 0

which do not have periodic perturbations in time (see figure 3(a)). Analyticity is the essential
feature of the time-dependent coefficientsF(t) in order that the local structure is the one
predicted by the computations in the previous sections.

We are going to analyse the behaviour around a movable singularityt0 and so, in the
following, both for (4.1) and (4.2), we substituteF with its Taylor expansion which we
suppose convergent in a convenient neighbourhood of a singularity

F(t) =
+∞∑
k=0

fk(t − t0)
k. (4.3)

When ε = 0, the integralq(t) of (4.1) may be locally represented as a Laurent expansion
around the movable time poles

q(t) =
∑
k>0

ak(t − t0)
k−2 (4.4)

whereak ∈ R satisfy the following recursive relations:

[(2k − 2)(2k − 3) − 2a0]a2k = −a2k−2 +
k−1∑
j=1

a2j a2k−2j

a2k−1 = 0

k ∈ N

initialized by a0 = 6. It is easy to check that the compatibility conditions are satisfied for
the resonance terma6.

If we now try the same type of expansion whenε 6= 0, then the dominant behaviour
is still (t − t0)

−2, but, due to the presence of the perturbative time-dependent term, the
compatibility condition for the resonance terma6 becomes

ε2f 2
1

4
+ εf2

(
1 − f0ε

2

)
+ 6εf4 = 0.

Such a condition cannot in general be satisfied by a generic perturbationF , for whatever
value of t0; this means that the Laurent series no longer represents a formal solution to our
equation.
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If we now substitute the following series:

q(t) =
∑
k,j>0

akj (t − t0)
k−2[(t − t0)

6 log(t − t0)]
j

=
∑
k,j>0

akj (t − t0)
k−2+6j logj (t − t0) (4.5)

into equation (4.1), we get, for the resonance terma60, the following compatibility equation:

7a01 = −a40 + ε(a40f0 + a30f1 + a20f2 + a00f4) + 2a20a40 + a2
30 (4.6)

which assigns the value toa01, because the defining equation ofa01 is identically satisfied.
Let us now proceed with theα-method (A.2). The only possible choice of the optimal

exponent ism = −2 and we get the following sequence of differential equations:

F (0) ≡ d2q(0)

dT 2
− (q(0))2 = 0

F (1) ≡ d2q(1)

dT 2
− 2q(0)q(1) = 0

F (2) ≡ d2q(2)

dT 2
− 2q(0)q(2) − (q(1))2 + q(0) + εf0q

(0) = 0

F (3) ≡ d2q(3)

dT 2
− 2q(0)q(3) − 2q(1)q(2) + q(1) + εf0q

(1) + εf1q
(0)T = 0

F (k) ≡ d2q(k)

dT 2
− 2q(0)q(k) − Sk(q

(0), . . . , q(k−1), T )0 k > 4

(4.7)

where, as in (2.4),

T = (t − t0) log
1
6 (t − t0). (4.7a)

The first equation has 6P as solution (not on the separatrix),P(T − c0, 0, g3) being the
Weierstrass function, while the homogeneous part of theF k, k > 1 is a Laḿe-type equation
(see [11]) whose solutions may be written in terms of the Weierstrass function and its
derivative, with polar singularities of order−3, 4.

As pointed out in [6], the solutions of the homogeneous linear partF (j), j > 1 do
not play any role for what concerns the singularity structure of the solutions, since the
singularities generated by them are compensated by singularities of the particular solutions
of the inhomogeneous part. So the only singularities appearing in the infinite expansion
q(t) produced by the linear equations are those due to the solutions of their inhomogeneous
part.

So let us analyse the singularities which show up in the particular solutions of the
equationsF k, k > 1. A particular solution may be obtained with the method of variation
of constants and, as pointed out in the previous sections, we cannot exclude the presence
of movable critical points. In fact, there do necessarily appear movable logarithms in the
particular solution to equation

F (6) ≡ d2q(6)

dT 2
− 2q(0)q(6) + q(4) − 2q(1)q(5) − 2q(2)q(4) − (q(3))2 + εf0q

(4) + εf1q
(3)T

+εf2q
(2)T 2 + εf3q

(1)T 3 + εf4q
(0)T 4 = 0.

This can be easily checked by considering, for simplicity, the particular solution ofF (0)

along the separatrix

q(0)(T ) = 6(T − c0)
−2.
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The general solution of the homogeneous linear equation associated toF k, k > 1 is then

q(k)
g (T ) = c1(T − c0)

4 + c2(T − c0)
−3

and the particular solution ofF (6) obtained with the method of variation of constants is

q(6)
p (T ) = (T − c0)

4

7

[
εf2

2
(1 + εf0) + ε2f 2

1

4
+ 6εf4

]
log(T − c0)) + h.o.t.. (4.8)

So, there does appear a logarithmic singularity with coefficient equal toa01 (see (4.6)). In
order to remove it, we should consider the trivial case of a constant perturbation. Such
logarithmic singularities also appear in the particular solutions outside the separatrix, since
(4.8) represents the first-order term of the perturbative expansion ofq(6)

p (T ) outside the
separatrix. (Notice that, contrary to what was claimed in [7] logarithmic singularities also
have to appear at the resonance perturbative order for the Duffing example, since their
equation falls in the class considered in this paper.)

Let us now consider the limit(t − t0) → 0 under the condition that the argument of the
logarithm is arbitrarily large in absolute value. Under such an assumption, we can neglect
all of the terms of the formakj with k > 0, so that the recursive expansion simplifies to

(6j − 2)(6j − 3)a0j =
j∑

j1=0

a0,j1a0,j−j1. (4.9)

On the other hand, if we substitute

q(t) = q(0)(T ) log− 1
3 (t − t0) (4.10)

and (4.7a) into (4.1) then, in the asymptotic limit(t − t0) → 0 with |(t − t0)| � |T |, the
dominant terms satisfy the following differential equation:

q̈(0)(T ) − (q(0))2(T ) = 0. (4.11)

Equation (4.11) is just the first equation given by theα-method. The first integral of (4.11)
is

1
2(q̇)2 − 1

3q3 ≡ I∞ = −84a01. (4.12)

This means that we are able to conjugate the local singularity structure of theq(t) solution
of (4.1) with the global singularity structure of theq(T ) solution of (4.11).

In figure 6(b) we show the pull-back of the singularity nearest toT = 0 in the lattice
associated to (4.12), inverting(4.7a). Since the argument of(t − t0) is determined up to
integer multiples of 2π , it is clear from(4.7a) that we expect the appearance ofr = 6
branches of singularities in thet plane as the effect of the pull-back. As appears from
figure 6, the agreement between numerical integration of (4.1) and asymptotic approximation
explained above is quite good. In fact the structure of singularities of the integrated
equation (4.1) appears to depend on the one produced by pulling back the nearest singularity
to T = 0 in the lattice associated to (4.12) using transformation (4.10) betweent and T .
Moreover, the same kind of singularity structure also appears in the secondary branches.

5. A model for the global singularity structure

In this section we consider a simple model in order to justify the appearance of chimneys
in terms of a certain asymptotic approximation specified below. We also present in this
section some numerical analysis also on the global structure of the peaks.



Time singularities in a class of Hamiltonians 161

We have observed the appearance of such peaks in many examples in which we have
singled out as a common feature the exponential growth of the potential in the time direction
in which such structures are detected. Of course the peculiar shape of the peak depends on
the particular example considered and at present we do not have a general model in order
to explain their appearance and structure. We think in any case that the particular model
we present here sheds some light on this subject.

Let us consider the simplest possible model in which one sees the appearance of such
chimneys,

q̈ = q − ε exp(bt)q2 (5.1)

where we takeb > 0 and ε 6= 0 (fixed constant). Then we apply the following
transformation:

q(t) = exp(−t)2(z) z = exp(2t) (5.2)

to (5.1). We then get the following equation for2:

2̈ = − 1
4εz

(b−5)

2 22. (5.3)

Whenb = 5, the asymptotic conjugated model is an integrable one in the Painlevé sense.
The corresponding equation is in fact

2̈ + ε

4
22(z) = 0

whose general solution2(z) = 6P(i
√

ε

2 z − c0, 0, g3) is the Weierstrass function. The
singularities of2 are double poles disposed on a regular lattice with two fundamental
periods 2ω1, 2ω2. This lattice, through the transformationz = exp(2t), is pulled back
into a chimney of singularities which we show in figure 9(b). Then it is clear that the
singularities int of q are logarithmic in nature due to (5.2); moreover, the solution in this
case is explicit and is given by

q(t) = 6 exp(−t)P
(

i

√
ε

2
exp(2t) − c0, 0, g3

)
.

So the lattice of singularities ofP(z) is squeezed towards thet integration path by the
above transformation at exponential rate.

In the caseb = 5, we may then also give a bound on the rate of approximation of
the singularities pulled back from (5.3) to the integration path. Indeed, let us consider, for
simplicity, the case in which the lattice of singularities associated to (5.3) is rectangular, and
denote the basic periods with(2ω1, 2iω2), with ω1, ω2 ∈ R. Choose a path along thez-real
axis. Then the distance between the path and the singularities of the lattice,zn = 2nω1+ω2,

which are nearest to the path is constant and equal to

inf
z∈R

|z − zn| = |ω2|.
If we pull back the lattice of singularities using the transformation

z = exp(2t) zn = exp(2tn)

we easily get that the distance between the corresponding points in the time plane is given
by

inf
t∈R

|t − tn| = 1

n

∣∣∣∣ ω2

4ω1

∣∣∣∣ (1 + o(1)) (5.4)

whereo(1) → 0 asn → ∞. That is, the singularities of the model approach the integration
path at a rate which allows for infinite real-time analytic continuation of the solutions.
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Moreover, if one considers a slightly more general model

q̈ = q − (1 + ε exp(bt))q2 (5.5)

with b > 0, ε 6= 0 as before, then we may take (5.1) as its asymptotic approximation for
large real times (compare figures 9(a) and (b)).

We now briefly describe some of the numerical analyses we made on model (4.1) and
in particular on the following equation:

q̈ = −q(1 + ε sin(πt)) + q2. (5.6)

The peaks are obtained by integrating the equations starting from the time origin along a
path which lies in the real time axis up to the point(t0, 0) and then moving along increasing
or decreasing imaginary times for<t = t0. Then, whatever the initial conditions, the degree
of V, R andε 6= 0 are, more and more singularities appear which look as if they approach
the integration path (see figures 1, 2, 3(a), 4(a), 5(a) and 9). Such chimneys also appear
if we make a certain number of turns around some local singularity and then move up (see
figure 8(b)) and seem to appear independently of the choice oft0 whatever the value ofε
(see figure 8(a)).

In particular, we tried to check whether the ratio of approximation of singularities to
the integration path for model (5.6) had the same rate as that of model (5.1). Indeed, we
are convinced that such rate should depend only onl. The major problem is that we cannot
control whether the ATOMFT program detects all interesting movable singularities along
a certain path. In this respect, a comparison with other numerical methods for detecting
singularities would be extremely interesting.

Under the assumption that we do not lose ‘too many’ singularities with ATOMFT,
tables 1 and 2 show that there is a scaling invariance as we changeε keeping all other
quantities fixed. The ‘peak’ moves without changing its form towards the real time axis
asε increases. The right(+) and the left(−) branches approach the integration path at a
negative rate, approximately proportional ton−1 (see the first column in tables 1 and 2) in
rough agreement with (5.4), for example (5.1).

Table 1. We plot the interpolated angular coefficients of the singularitiest (n) = (t
(n)
R , t

(n)
I ) to

the left of the integration path versus logn, the order of appearance oft (n) for various values of
ε and for the same initial conditionsx(0) = 0.5, ẋ(0) = 0 and the same time integration path
(along the real axis up tot = 1, and then parallel to the imaginary time axis). The last line
refers to the case of figure 9, in which we make 20 turns around the first singularity along the
chimney before continuing in the imaginary direction.

Interpolated angular coefficients for left approximation

ε log(t
(n)
R − t0) log(t

(n)
I ) log(t

(n+1)
R − t

(n)
R ) log(t

(n+1)
I − t

(n)
I ) log(t(n) − t (n))

10−4 −0.95 0.08 −1.86 −0.96 −0.96
10−3 −0.96 0.09 −1.88 −0.96 −0.96
10−2 −0.96 0.10 −1.89 −0.96 −0.96

0.1 −0.96 0.11 −1.91 −0.95 −0.95
1.0 −0.96 0.13 −1.91 −0.95 −0.95

160.0 −0.999 0.21 −1.97 −0.99 −0.99
0.01∗ −0.90 0.09 −1.78 −0.90 −0.90
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Table 2. We plot the interpolated angular coefficients of the singularitiest (n) = (t
(n)
R , t

(n)
I ) to

the right of the integration path versus logn, the order of appearance oft (n) for various values
of ε and for the same initial conditionsx(0) = 0.5, ẋ(0) = 0 and the same time integration path
(along the real axis up tot = 1, and then parallel to the imaginary time axis). The last line
refers to the case of figure 9, in which we make 20 turns around the first singularity along the
chimney before continuing in the imaginary direction.

Interpolated angular coefficients for right approximation

ε log(t
(n)
R − t0) log(t

(n)
I ) log(t

(n+1)
R − t

(n)
R ) log(t

(n+1)
I − t

(n)
I ) log(t(n) − t (n))

10−8 −0.99 0.06 −2.02 −0.93 −0.93
10−3 −0.81 0.07 −1.62 −0.81 −0.81
10−2 −0.96 0.08 −1.64 −0.84 −0.84

0.1 −0.99 0.11 −1.87 −0.92 −0.92
1.0 −0.86 0.11 −1.60 −0.85 −0.85

160.0 −0.987 0.21 −2.05 −0.97 −0.97
0.01∗ −0.96 0.10 −1.72 −0.93 −0.93

6. Conclusions

The local asymptotic analysis presented in this paper shows a commonly expected behaviour
of the singularities of all Hamiltonian systems perturbed with time-analytic perturbations
in class (1.1). In particular, we have proposed an asymptotic expansion of the solutions of
(1.1) modelled on the Painlevé α-method where we take the parameterα itself as a function
of time.

In this way, we can get an asymptotic conjugation between the local singularity structure
of the original model (1.1) and the global singularity structure of the zeroth Painlevé equation
using transformation (2.4). Notice that our model contains as a subcase the results presented
in [8].

Numerically there is good agreement between the theoretical predictions obtained with
perturbative expansions and asymptotic approximations, in the cases where the resonancer

is an integer number.
The cases in whichr is rational are even more delicate. In fact, the global structure

of the conjugated system (2.8) is no longer integrable in the sense that even at zeroth
order, the solutionq(0) is not uniformizable. That is, the conjugated system already exhibits
an infinite-sheeted Riemann structure. In order to see numerically the local ‘branches’ of
singularities, we have to move at a small but finite distance from the singularity. So we
think that numerical problems may show up due to the extreme difficulty of controlling the
way in which we change the sheet, integrating the equation along complicated paths. We
think that more complicated cases such as these deserve study in themselves.

In any case, we still lack an analytic proof of the convergence of the method and of
the fact that secondary singularities should appear and form the structures shown in this
paper. In section 3, as a first step towards this goal we have shown that the psi series
converges absolutely. Unfortunately the convergence proof presented here and analogous
proofs considered in other classes of examples (see [14]) do not allow for explicit estimates
of the radius of convergence.

In any case, we are convinced that the singularities we detect numerically are on the
boundary of the domain of convergence of the psi series. We also believe that theα-method
gives the optimal way in which one should resum the series in order to prove the appearance
of secondary singularities. Of course psi series are extremely complicated objects and it is
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not known in general that singularities appear on the boundary of the convergence domain
(see [11] for instance).

In section 5 we have considered the global singularity structure associated to the
solutions of (1.1) in the case in which there is exponential growth in time of the potential
in some directions. We conjecture that in this case, one has to expect the appearance of
‘barriers’ of singularities integrating (1.1) in directions parallel to the exponential growth of
the potential. We got numerical evidence of this conjecture in all the examples considered.

We have proposed here a simple basic example which may be considered as the simplest
model for further investigation on the nature and structure of these ‘chimneys’. The model
considered here allows for infinite-time analytic continuation of the solution since the
singularities approach the path of integration at sufficiently low speed. We are going to
investigate this and other models in order to construct an asymptotic approximation for
large times. We are convinced that the structure of the ‘chimneys’ is strictly related to
the asymptotic properties in the time of the potential, more than with the integrability or
non-integrability of the model.

Preliminary numerical investigations on a restricted class of models show that the form
of the peaks depends on the system under consideration, and depends very little on the
value of the perturbation parameterε (in a certain range ofε). The peaks look self-similar
and, asε grows, shift towards the real axis without changing of form.

When degV = 2, the singularities move towards the integration path at roughlyn−1

speed, wheren is the order of appearance of the singularity in the chimney. Such results
are in agreement with what is evidenced by our simple model.

Finally, the methods explained here about the local analysis of the time singularities
may be applied in principle also to a more general class of Hamiltonian systems in which
H is algebraic inp, rational inq and analytic int, since Painlev́e α-method still works.
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Appendix A

Let us rewrite (2.1) as

F(q, t) = 0. (A.1)

To (A.1), we may formally associate an infinite sequence of equations obtained by using
the following algorithm originally introduced by Painlevé in order to get the necessary
conditions for Painlev́e integrability (see [14] and [11]).

Let t0 ∈ C (in our class of examples there are no fixed singularities),α be a non-zero
complex parameter, and let us consider the following perturbation:

α 6= 0 : t = t0 + αT q = αm
+∞∑
k=0

αi(k)q(k) : F = αs
+∞∑
k=0

αi(k)F (k) (A.2)
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wherem is rational and has to be chosen optimally;s is constant and is totally determined by
m; i(k) are sequences of rational numbers determined by imposing compatibility conditions
in the recursion relations in (A.2).

Then, at perturbation order zero, all coefficients of equationF (0) are constant and, for a
suitable choice ofm, only a few terms survive. Following [7], we call a simplified equation,
the equation of order zero associated to a given perturbation

F (0)(q(0)) = 0. (A.3)

The successive steps of theα-method consist of:
(1) determining all sequencesm such that the perturbation (A.2) verifies (A.3);
(2) finding the general solution of the simplified equation;
(3) defining, for eachk > 1, q(k) as a particular solution of equationF (k) = 0.
In our setting,F (k), k > 1 is linear with the same homogeneous non-homogeneous

parts depending on the previous termsq(0), . . . , q(k−1) and onT . Of course in the Painlevé
integrable cases—which are not present in our setting—we have thatq(k) is free from
movable critical points, in order to satisfy stability for all sequences of perturbed equations.

It is easy to realize that the right choice ofm is nothing other than the rational power
corresponding to the dominant behaviour of the movable singular points, that is

m = − 2

l − 1
(A.4)

while the indicesi(k) = βk

l−1 are as in (2.3). Moreover, the dominant part of the solutions
of q(k)(T ) around the movable singularities isak,0T

i(k)+m up to orderk which corresponds
to the so-called resonance index. In our case, the resonance is

r = 2
l + 1

l − 1
. (A.5)

We now prove that the dominant term of the corresponding particular solution to equation
F (r) presents a logarithmic singularity of typeT r+m log(T ), unless certain very peculiar
conditions in the dependence on time ofR(t, q) are satisfied. These conditions are, of
course, exactly the same as those which have to be satisfied in (2.3) in order thatak,j = 0
if j 6= 0.

For simplicity, we check the appearance of logarithmic singularities for the first time at
the indexi(k̄) = r when (a.2) is initialized by the ‘separatrix’ solutionq(0)(T ) = c(T −t1)

m,

of F (0) = q̈(0) − Aq(0)l = 0, wherecl−1 = m(m−1)

A
and t1 depends on the initial condition.

Indeed, if we prove the appearance of logarithmic time singularities at indexi(k̄) = r for
the first time in this particular case, then logarithmic singularities have to appear, for the
first time, at the same recursive orderr, also in the generic one since, locally, the dominant
behaviour of such generic solutions near the singularities is just the exact behaviour of the
‘separatrix’ solution. Let

q̈ = ql + W(q, t, ε) (A.6)

whereW is algebraic of degree at mostl−1 in q and analytic int. ThenF (0) = q̈(0)−q(0)l =
0 has separatrix solution

q(0)(T ) =
[

2l + 2

(l − 1)2

] 1
l−1

(T − t1)
− 2

l−1 (A.7)

equationsF (k) = 0, k > 1, are all linear with homogeneous part

ẅ − l(q(0))l−1w = 0 (A.8)
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and have basis of solutions given byw1(T ) = (T − t1)
− l+1

l−1 andw2(T ) = (T − t1)
2

l−1 . The
complete equation at orderk > 1 is

q̈(k) − l(q(0))l−1q(k) = Pk(q
(0), . . . , q(k−1), T , ε) (A.9)

with Pk a homogeneous polynomial of degreem + i(k) − 2 in the q(j) and in f
(i)

j , the
coefficients of the Taylor expansion of the time-dependent coefficients ofFi in (2.2).

The particular solutionsqP
k (T ) can be obtained using the method of variation of

constants

qP
k (T ) = −q

(1)
k (T )

∫ T q
(2)
k Pk

1
+ q

(2)
k (T )

∫ T q
(1)
k Pk

1

whereq
(1)
k and q

(2)
k are the two independent solutions of the corresponding homogeneous

equation listed above and

1(T ) = q
(1)
k (T )q̇

(2)
k (T ) − q

(2)
k (T )q̇

(1)
k (T ) = (3l + 1)/(l − 1)q(1)(0)q(2)(0)

is the Wronskian.
Fork < k̄, q

(k)
P (T ) = (T −t1)

ν
(1)
k

∫ T
(T −t1)

µ
(1)
k +(T −t1)

ν
(2)
k

∫ T
(T −t1)

µ
(2)
k with µ

(1)
k < −1

andµ
(2)
k > 0 and fork = k̄,

qP

k̄
(T ) = l − 1

3l + 1
q

(1)

k̄
(0)q

(2)

k̄
(0)

×P̃k̄(0)

[
− (T − t1)

2l
l−1

∫ T

(T − t1)
−1 + (T − t1)

− l+1
l−1

∫ T

(T − t1)
2 l+1

l−1

]
.

Then logarithmic singularities are absent if and only ifP̃k̄(0) ≡ 0. This ends the proof since
this last condition cannot be satisfied by a generic non-trivial time-analytic perturbationR
independently oft0. Notice thatPk ≡ P̃k̄(0)(T − t1)

m+i(k)−2 in the separatrix case.

Appendix B

Using the notations of section 3, below we show by induction that the following proposition
is true.

Proposition B.1. For all l > 2, let us define

γ ∗ = l − 2

l − 1
.

Then,∀γ ∈]γ ∗, 1[ it is possible to find constants 0< M < 1 andK > 0 such that

max{|hN(z)|, |gN(z)|} 6 M
(K − Kz)

N
r̄

(N + 1)

γ

∀N > 1, ∀z < 0 (B.1)

wherehN(z) andgN(z) are given by (3.8).

The casel = 3 andF1(t) ≡ 0 (Duffing equation) has been considered in [14]. Notice
that the optimal exponent in (B.1) isγ ∗. Indeed, in that caseK ≡ K(γ, M) is the smallest
possible. We believe that it is possible, in the generic case, to achieveγ ∗, but this requires
more delicate estimates than those presented here. Actually in [14], the authors have proved
that in general it is possible to takeγ = 1

2, if l = 3 andF1 ≡ 0. In any case neither proof
produces explicit estimates ofK.

Proof of proposition B.1. In analogy with [14], we divide the proof into two parts. First,
from lemma B.2, we directly estimate the firstN̄ terms with (B.1), ifM andK are chosen
conveniently. The second part is by induction onN , and fixesγ ∗.
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Lemma B.2. Let r̄ > 1, γ > 0 be fixed and letKN(z) = ∑N/r̄

i=0 c
(N)
i zi be any sequence of

polynomials withN > 1. Then, for allN̄ > r̄ and for all 0< M < 1 there existsK > 1
such that

|KN(z)‖ 6 M

(N + 1)γ
(K − Kz)

N
r̄ ∀z < 0, N = 1, . . . , N̄ .

Lemma B.2 is analogous to lemma 4.3 in [14] and its proof is trivial. We may apply
lemma B.2 toKN = hN, gN so that (B.1) is true forN = 1, . . . , N̄ . We now proceed by
induction starting with an estimate oñPN. The following inequality easily follows from
(3.7) using estimate (b.1) true forn < N :

|P̃N (z)| 6 Ml(K − Kz)
N
r̄

∑
k1+···+kl=N
ki 6=N,i=1,...,l

l∏
i=1

(ki + 1)−γ

+
l−1∑
j=0

cjM
j (K − Kz)

N+(l−j)µ

r̄

∑
k1+···+kj =
N+(l−j)µ

j∏
i=1

(ki + 1)−γ + f
(0)
N+lµ

l−1 β

+M

β(N+(l−1)µ)

l−1∑
k0=0

f
(1)
k0

(K − Kz)
N+(l−1)µ− l−1

β
k0

r̄

(
N + (l − 1)µ − l − 1

β
k0 + 1

)−γ

.

(B.2)

First, sinceF (j)(t), j = 0, 1 are entire functions, we may estimatef
(j)

k 6 K, ∀k > 0,
j = 0, 1. Moreover, it is not restrictive to supposecj 6 K, j = 0, . . . , l − 1. The major
concern is in estimating sums of the form

A(N, j) =
∑

k1+···+kj =N

j∏
i=1

(ki + 1)−γ j = 1, . . . , l, N > 1. (B.3)

If j = 0 the sum reduces to a constant term whenN = −lµ and is zero otherwise. If
j = 1, A(N, 1) = (N + 1)−γ . If j = 2 andγ < 1, we easily get that

A(N, 2) = 2

N
2∑

k1=0

(k1 + 1)−γ (N + 1 − k1)
−γ

6 2

(
N

2
+ 1

)1−2γ ∫ 1

0
dx(1 − x2)−γ 6 K(N + 2)1−2γ . (B.4)

In general, ifj > 2, we have that

A(N, j) 6 A(N, 2)

( N∑
k=0

(k + 1)−γ

)j−2

6 K(N + 2)1−2γ (N + 1)(1−γ )(j−2)

(1 − γ )j−2
. (B.5)

We are now able to estimate (B.2), using (B.3), (B.4) and (B.5):

|P̃N | 6 MlK

(1 − γ )l−2
(N + 2)1−2γ (N + 1)(1−γ )(l−2)(K − Kz)

N
r̄

+KδN+lµ + K(N + 1)−γ (K − Kz)
N+(l−1)µ

r̄

+K2(N + 2)1−2γ
l−1∑
j=2

Mj(N + 1)(1−γ )(j−2)

(1 − γ )l−3
(K − Kz)

N+(l−j)µ

r̄
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+K + KM(N + 1)−γ
N∑

k0=0

(K − Kz)
N+(l−1)µ

r̄
− (l−1)k0

βr̄

6 (l + 2)MlK

(1 − γ )l−2
(N + 2)1−2γ (N + 1)(1−γ )(l−2)(K − Kz)

N
r̄

+KM(N + 1)−γ+1(K − Kz)
N+(l−1)µ

r̄ . (B.6)

We now use the following technical lemma (see also [14]).

Lemma B.3. Let K > 0. Then,∀N > r̄ and∀z < 0 the following inequality holds:

I (z) ≡
∫ z

−∞
exp

{(
βN

l − 1
− r

)
(ξ − ζ )

}
(K − Kξ)

N
r̄ dξ 6 (K − Kz)

N
r̄

(N − r̄)
δl (B.7)

whereδl = (l − 1)
2(l2−1)+β(l+2)

β(l+3)
.

Proof of lemma B.3. Using integration by parts, as in [13], we get

I (z) = (K − Kz)
N
r̄

(
βN

l − 1
− r

)−1

+ NK

r̄
(K − Kz)

N
r̄
−1

(
βN

l − 1
− r

)−2

+ · · ·

+N

r̄

(
N

r̄
− 1

)
· · ·

(
N

r̄
−

[
N

r̄

]
+ 1

)
KN(K − Kz)

N
r̄
−[ N

r̄ ]
(

βN

l − 1
− r

)−[ N
r̄ ]1

+N

r̄

(
N

r̄
− 1

)
· · ·

(
N

r̄
−

[
N

r̄

])
KN+1

(
βN

l − 1
− r

)−[ N
r̄

]−1

×
∫ z

−∞
exp

{(
βN

l − 1
− r

)
(ξ − z)

}
(K − Kξ)

N
r̄
−[ N

r̄
]−1. (B.8)

Sinceξ ∈] − ∞, z[, we get∫ z

−∞
exp

{(
βN

l − 1
− r

)
(ξ − z)

}
(K − Kξ)

N
r̄
−[ N

r̄
]−1 6 (K − Kz)

N
r̄
−[ N

r̄ ]−1(
βN

l−1 − r
) .

Then (B.8) becomes

I (z) 6 (K − Kz)
N
r̄

(
βN

l − 1
− r

)−1 {
1 + N

r̄

(
βN

l − 1
− r

)−1

×(1 − z)−1

[
1 +

N∑
j=1

(1 − z)−j

(
βN

l − 1
− r

)−j j∏
i=1

(
N

r̄
− i

) ]}
6 (K − Kz)

N
r̄ (βN − 2(l + 1))−1(l − 1)

{
1 +

(
1 + 2(l + 1)

β

)
l − 1

l + 3

}
from which we immediately get estimate (B.7). We now substitute (B.6) into (3.12) and
use (B.7), and we get

max{hN(z), gN(z)} 6 (l + 2)δlM
lK

(1 − γ )l−2
(N + 1)(1−γ )(l−2)−2γ (K − Kz)

N
r̄

+KMδl(N + 1)−γ (K − Kz)
N+(l−1)µ

r̄ . (B.9)

The proof of proposition B.1 is now finished since it is sufficient to chooseγ > l−2
l−1 in

(B.9) in order that (B.1) is satisfied forN sufficiently big. Indeed, the second term in (B.9)
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is dominated by the first one. In order to ensure that forγ = γ ∗ our estimates are still
valid, it is sufficient that

2(l + 2)δlM
l−1K

(1 − γ ∗)l−2
< 1.

Appendix C

Here we give some details on the properties of the solutions of the infinite set of equations
obtained with theα-method in the example considered in section 3.

In the case of equation (4.1), the homogeneous linear equations fork > 1 are of Laḿe
type:

d2w

dz2
− (h + n(n + 1)P(z))w = 0

where P is the elliptic Weierstrass function with poles at 2mω + 2m′ω′, for the choice
n = 1, h = 0.

From the Fuchsian theory we easily obtain the two independent solutions of the
homogeneous equation:

w1(z) = (z − 2mω − 2m′ω′)2W(z)

whereW(z) is analytic in the domain of the point 2mω + 2m′ω′ and is different from zero
at that point.

The second solution is

w2(z) = cw1(z)

∫
dz′

(w1(z′))2
.

The two solutions have, respectively, zeros of order 3 and poles of order 2. In our case,
the solutions may also be expressed in the following way:

w1 = exp(−zζ(a))
σ (z + a)

σ (z)

w2 = exp(zζ(a))
σ (z − a)

σ (z)

wherea is the solution ofP(a) = h.
Let us now consider what are the singularities of the complete solution of the

inhomogeneous equations. We recall that in order to satisfy the necessary conditions for
Painlev́e integrability using theα-methods we have to require thatq(0) is free from movable
critical points and that the particular solutions of the inhomogeneous equations (4.17) are
also free from movable critical points. In particular, in order to satisfy Painlevé conditions
in our case we should impose that the particular solutions of (4.17) do not contain other
singularities than double poles. But this cannot be true ifF(t) is not a trivial constant
perturbation.

In fact, using the method of variation of constants, the particular solution may be written
as

qP
k (t) = −q

(1)
k (t)

∫ t q
(2)
k Sk

1
+ q

(2)
k (t)

∫ t q
(1)
k Sk

1

whereq
(1)
k andq

(2)
k are two independent solutions of the homogeneous equation and

1(t) = q
(1)
k (t)q̇

(2)
k (t) − q

(2)
k (t)q̇

(1)
k (t) = −3g3
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is the Wronskian. Then, by considering the leading behaviour of the solutionsq(1)(t)

and q(2)(t) we can show that a logarithmic singularity appears necessary at the level of
the particular solution relative to the sixth equation which represents the analogue of the
resonance condition of the local series expansions. This can be easily checked for the case
of the separatrix solutions where we get

q
(k)

(1) (t) = (t − c0)
4 q

(k)

(2) (t) = (t − c0)
−3 1 = −7.

Then the particular solutions of the inhomogeneous equations are

q(1)
p (t) = 0

q(2)
p (t) = 1

2(ω + εf0)

q(3)
p (t) = 1

2εf1t

q(4)
p (t) = (ω + εf0)

2

40
(t − c0)

2 + 3εf2

5
t2 − εf2c0

5
t + εf2c

2
0

10

q(5)
p (t) = εf1(ω + εf0)

[
(t − c0)

3

12
+ c0

20
(t − c0)

2

]
+εf2

[
(t − c0)

3 + 9

5
c0(t − c0)

2 + 3

2
c2

0(t − c0) + c3
0

2

]
q(6)
p (t) = − (t − c0)

4

7

∫ t

dτ

([
εf2

2
(ω + εf0) + ε2f 2

1

4

]
τ 2(τ − c0)

−3 + 6εf4τ
4(τ − c0)

−5

)
+ (t − c0)

−3

7

∫ t

dτ

( [
εf2

2
(ω + εf0) + ε2f 2

1

4

]
×τ 2(τ − c0)

2 + 6εf4τ
4(τ − c0)

2

)
= (t − c0)

4

7

[
εf2

2
(ω + εf0) + ε2f 2

1

4
+ 6εf4

]
log(t − c0).

In the case of (4.2),m = − 1
2 ands = − 5

2 andq(0)(t) = √
γ whereγ is the elliptic function

solution of the following differential equation:

γ̈ − γ̇ 2

2γ
− 2γ 3 = 0.

Along the separatrix the solution reduces toγ (t) =
√

3
4

1
(t−c0)

. The linear homogeneous
differential equations fork > 1 admit of the following solutions:

v1(t) = t

2

γ̇√
γ

+ 1

2
√

γ v2(t) = γ̇

2
√

γ

and have algebraic branching points of order5
2 and− 3

2 respectively. Along the separatrix

such homogeneous solutions reduce tov1(t) = (t − c0)
5
2 and v2(t) = (t − c0)

− 3
2 . As

expected, logarithmic singularities appear from the particular solutions of the differential
equationF (6). Indeed, in the ‘separatrix’ case

q(6)
p = (t − c0)

5
2

4

(
3

4

)1
4

εf1 log(t − c0) + · · · .

As before, in order to exclude the appearance of such logarithmic singularities inq(6)
p , we

should require that the perturbationF(t) is trivially constant. Moreover, also in this case,
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such a solution as (A.2) is the first-order expansion term of the particular solution outside
the separatrix and so there does follow that one expects logarithmic singularities in the
solutions of the associated system of equations (4.7).
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[8] Fournier J D, Levine G and Tabor M 1988 Singularity clustering in the Duffing oscillatorJ. Phys. A: Math.
Gen.21 33

[9] Goriely A and Tabor M 1995 The singularity analysis for nearly integrable systems: homoclinic intersections
and local multivaluednessPhysica85D 93

[10] Hille E 1974 A note on quadratic systemsProc. R. Soc.A 72 17
[11] Hille E 1976Ordinary Differential Equations in the Complex Domain(New York: Wiley–Interscience)
[12] Ince E L 1965Ordinary Differential equations(New York: Dover)
[13] Levine G and Tabor M 1989 Integrating the nonintegrable: analytic structure of the Lorenz system revisited

Physica33D 189
[14] Melkonian S and Zypchen A 1995 Convergence of psi series solutions of the Duffing equation and the Lorenz

systemNonlinearity8 1143
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and non-integrable systemsPhys. Rep.180 159
[19] Smith R 1974 Singularity of solutions of certain plane autonomous systemsProc. R. Soc.A 72 307


