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Abstract. We analyse the local and global structure of time singularities for a class of quasi-
integrable Hamiltonian systems in the Arnold-Liouville sense. We show that there is good
agreement between the numerically observed local behaviour of the solutions and the perturbative
scheme we produce using asymptotic approximations of the solution around the singularities.
We also prove the convergence of the Psi-series associated to the movable singularities of the
systems considered. We also propose a simple model in order to analyse the global structure of
the singularities in the directions of exponential growth of the potential in time.

1. Introduction

In this paper we consider quasi-integrable Hamiltonian systems with Hamiltonians of the
following form:

2
H(g, p. 1) = % +V(q) + €R(q. 1) (1.1)

where) andR are algebraic ip andR is entire inz. We also suppose that d¥g> degR.
g and p are chosen to be complex.

The general solution of the nonlinear time-dependent equations associated to (1.1) may
be locally represented as psi series [11], possessing movable singularities. In the case of the
Duffing equation (see [3, 4, 8,9, 18]) the appearance of clusters of movable singularities has
been evidenced numerically near a movable critical point. In particular, these authors have
considered the psi series associated to the general integrals of the Duffing system in order
to give a justification of the numerical behaviour. Psi series have also been considered in
the case of other systems (see [6, 13,16, 17]).

We are interested here in the asymptotic behaviour in time near a movable singularity
with arbitrary degree o in (1.1).

Whene = 0 the global structure of the movable singularitieg;&f) is, in general, non-
trivial, provided the deg is sufficiently high. In fact, when deg < 4 the movable time
singularities are non-critical poles (the system is actually also P&#igegrable [7,12, 15]
in this case) and the global structure of the Riemann sheets may be described quite easily.
When deg@’ > 4, the movable singularities are algebraic in nature and, in the generic case
critical; that is, they produce an infinite sheeted Riemann foliation in the large which cannot
actually be uniformly described. In both cases, the singularities, whether critical or not, are
isolated.
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When we add a time-analytic perturbation £ 0), the movable time singularities of
q(¢) still have locally the same polar or algebraic dominant part as in the corresponding
unperturbed case. This follows from the assumptionWegdegR. Their nature, instead,
is logarithmic for a generic time-analytic perturbation, as can be shown by expressing locally
q(t) via a psi series.

Numerically, if we start to integrate the differential equations associated with (1.1), along
paths which turn around one of such singularities, we continuously change the Riemann
sheet and observe new singularities arising and disappearing at each turn (see flgres 3(
4(b), 5(b), 6(a) and 78)).

In order to explain such a behaviour we make a certain ansatz about the dominant terms
in the psi series associated 4¢¢) in the neighbourhood of a movable critical singularity.

We then use the Painléw-technique where, in our approximatiom,is time-dependent,
and we give a constructive asymptotic approximation of the solution.

Such asymptotic approximation can be interpreted as the summation of the psi series
taking its terms in an appropriate order. So the main problem is whether such a procedure
is justified, that is whether the psi series converges absolutely. Indeed, for simplicity of
notation, we consider a subclass of systems of the form (1.1) and prove that such series
converge absolutely in convenient sectors of the complex time plane, so that the method
proposed here is self-consistent. We do not consider here the optimal convergence ratio, but
we are convinced that the maximal radius of convergence is connected with the appearance
of the first singularity of the ‘cluster’.

Concerning the convergence of psi series solution [10, 11, 19], recently, Melkonian and
Zypchen [14] have shown the convergence of the psi series in the case of the Duffing
equation and the Lorenz system.

In particular, the asymptotic analysis proposed here shows that the Hamiltonian system
(1.1) may be conjugated with a time-independent one via a transformation which conjugates
the local singularity structure of (1.1) to the global singularity structure of the corresponding
time-independent system. Of course, this allows one to predict the local singularity structure
quite accurately only when the movable singularities of the underlying time-independent
system are non-critical (dég < 4) or produce only finite branching (like in the second
example of section 4).

We also consider numerically the time singularity structure when the time-dependent
perturbation in (1.1) grows exponentially in a certain complex time direction. In these cases,
if we numerically integrate the equations of motion along such particular time direction,
we see the appearance of singularities which look as if they accumulate on the integration
path, forming a sort of ‘barrier’ for the singularities (see figures 1, 2),34(@@), 5@), 8
and 9). Such ‘peaks’ have already been observed in the case of the Duffing system with
a time-dependent term of the form &isr)—which is a particular example in the class we
consider here—in [4, 8, 18].

We are convinced that such peaks are due to the exponential growth of the potential
along the integration path. In order to support this conjecture, we consider here the simplest
model with de@’ = 3, which is integrable in suitable coordinates. In particular, using this
model, we can prove that the singularities approach the integration path at a sufficiently
low speed. This allows for analytic continuation of the solution in the direction in which
the potential explodes.

Finally, we have also started a numerical investigation of the structure of such chimneys
for a different example with deg = 3, in order to give lower bounds to the rate of
approximation of the singularities to the integration path.
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Figure 1. We plot the global singularity structure in time for the differential equation

G = q— (1+ erexpbr)/(1 + expbt)))(1 + ez sin(wt))g?, wheree; = 0.01, e, = 0.001,

b =03, 0 =2m, q(0) = 0.5, 4(0) = 0.0, along path starting from = 0 and moving parallel

to real and imaginary axes. The singularities are identified as double poles by ATOMFT; notice
that the perturbation is asymptotically periodictin

Numerical and asymptotic analyses for large times give compatible bounds on the rate
of approximation of the singularities to their asymptotes. In particular, in the examples
considered here, the singularities approach the integration path roughty apeed, where
n is the index position of the singularity. So the singularities approach the path of integration
accumulating on it in a way which could allow for infinite time-analytical continuation of
the solutions in the directions of exponential growth of the potential. We think that the rate
of accumulation of singularities depends on dieg 3.

In section 2 and in appendix A, we present our asymptotic model for the local singularity
clusters around a movable critical point. In section 3 and in appendix B, we prove the
convergence of the psi series. In section 4 and in appendix C, we present an example and
apply the perturbative asymptotic techniques to it.

In section 5 we consider the time singularity structure for large times in the directions of
exponential growth of the potential; we present an asymptotic model for a class of examples
and compare it with numerical simulations.

In section 6 we present our conclusions from the analysis in the previous sections.

2. The Painleé a-method and an asymptotic approximation near the movable
singularities

In this section we consider local approximations of the perturbed differential equation
associated to the Hamiltonian (1.1) defined in the introduction

Gg=-V(q) +eR (g.1)
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Figure 2. Same as in figure 1, for the differential equativor= x (e sin(rt) — 1)x + x* where

e = 0.01, x(0) = 0.5, x(0) = 0. and the integration path is along the real time axis up to
t = 1.0 and then vertical. The singularities are recognized as algebraic of e2j& by the
program and lie on the same Riemann sheet.

where a prime denotes differentiation with respect togheariable. Since our analysis is
local, we may rescale the time variable and consider the case where

-1

i=q"+W@g.0=q"+ (c; +eFi(t)g’ (2.1)
j=0

with €, ¢; € R and F; entire functions.

In particular, we look for an approximation of (2.1) around a generic movable critical
point 7o, in order to describe locally the properties of the solutions and to construct a model
for interpreting theoretically the local singularity structure observed numerically. In order
to achieve this we apply the so-called Pai@ermethod assuming that in our asymptotic
approximation, which we introduce below,= (log(r — 1)) ~Y/". Numerically (see figures 6
and 7) there is good agreement between the singularities computed by direct integration of
(2.1) and those predicted by our local asymptotic approximation.

In appendix A we briefly recall the Painlewve-method algorithm and show that
logarithmic singularities are expected in the solutions of the transformed equations.

Let us consider the case in which the condition of appendiXxPA0) = 0, is not
satisfied at the resonance index term; then the local nature of the singularities is logarithmic
and the following psi series produces a correct set of conditions for the formal solution of
equation (2.1):

a(t) =Y ayt — )" Ot [(t — 10)" log (t — 1)’ (2.2)

k,j=0
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Figure 3. We consider the globak) and local b) singularity structure in time of the solution

of ¥ = x(e sin(wt) — 1) +ex? sin(r) + x® wheree = 0.01 and with initial conditions:(0) = 0.5,

x(0) = 0. The singularities ing) lie on the same Riemann sheet and are obtained by integrating
the equation along the real line up to the paint 5.0 and then moving along the imaginary
time axis. In ) we show the local singularity structure associated to the movable critical point
to = (5.533Q 1.9833 after projection on the time complex plane. They are obtained by turning
20 times aroundp. In both cases the singularities are identified as algebraic of orc%eby

ATOMFT.
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Figure 4. The same as in figure 3 in the case of equatjor g — (1 + €1 exp(bt) + €21)g2,
whereb = 0.3, €1 = 0.01, ¢ = 27¢€1, ¢(0) = 0.5, ¢(0) = 0 In (@) we first move along the
imaginary axis and then parallel to the real one.dh# = (3.3187 3.2830. The singularities

are identified as double poles by the ATOMFT program. Notice that in this case the time-

dependence is not periodic.
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Figure 5. The same as in figure 4 in the case of equatjor ¢ — (1 + € exp(br))g?, where
b =0.3,¢ =001, ¢4(0) =05, g0 = 0. In (b) 10 = (3.4503 3.4562. The singularities are
identified as double poles by the ATOMFT program. Notice that the potential has imaginary

period.
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Figure 6. We compare d) the local singularity structure obtained numerically with ATOMFT

as in figure 4 for the poing = (1.9746 2.0882 relative to equatiort = x (e sin(zt) — 1) + x2,

wheree = 0.01, x(0) = 0.5, x(0) = 0, with the e-asymptotic perturbation expansion at order

0 (b). The singularities are projected in both cases to the complex plane and are double poles.

The conjugated system of order 0 is Pai@éntegrable.



Time singularities in a class of Hamiltonians 151

243| (a) ‘
N )
:‘E/ - -
g
1.64 x
0.49 Ref(t) 1.40
243 ) '
“ P
;E’ L ]
1.64 .
0.49 Re(t) 1.40

Figure 7. The same as in figure 6, fap = (0.94504 2.0563 relative to equationk =
x(esin(t) + 1) + x5, wheree = 0.01, x(0) = 0.5, #(0) = 0, computed with ATOMFT &) and
predicted by thex-asympotic periodic expansion at orderk).(The singularities are projected
to the complex time plane and are algebraic of orddy2; notice that the conjugated system
of order 0 is integrable in the generalized Paigleense, since its solutions are square roots of

meromorphic functions.
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Figure 8. In (a) we superpose the singularity clustering for equatioa x (e sin(r) — 1) 4 x2
wherex(0) = 0.5, x(0) = 0, for ¢ = 10~%(= highest ‘peak), 1073, 1072, 0.1, 1(= lowes)
and integration path along the real time axis upr te 1 and the vertical. The points shown
in this picture were used for obtaining table 1. k) ve plot the complex time singularity
clustering for equatiot = (e sin(wt) — 1)x + x2, wheree = 0.01, x(0) = 0.5, x(0) = 0
along the path moving along the real time axis up te 1, then turning around the singularity
o = (0.9861 2.1008 20 times and then moving up vertically with(z) = 1.
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Figure 9. We compare the global singularity structure associatefl $0g — (1 + € exp(br))g?
(@) and tog = g — e exp(bt)g? (b), wheree = 0.01,b = 5, ¢(0) = 0.5, §(0) = 0. We first
integrate the equation along the imaginary axis up;te- iz/60 and then parallel to the real
axis. Notice thatlf) is conjugated to an integrable model using equation (5.2).
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where
k
2 [+1 ) I—1
-1 T4 =
-1
We now consider an asymptotic approximationggf) in a neighbourhood of a movable
singularity, and relate such approximation to the set of formal solutions obtained using
the Painle@ a-method. In particular, we show that the asymptotic equations are exactly
those generated by the formalmethod expansion, and so, examining the solutions, we are
able to predict the generation of clusters of singularities with logarithmic-type structures, as
expected numerically, already at zeroth perturbative order.
Let us denote

t —to = pexpio).

We perform the numerical integration of equation (2.1) in the limit> 0, 6 — oco. In
particular, we may suppose th@t— oo sufficiently fast (in a sense specified below) so
that in expansion (2.2) the terms with= 0 are the dominant ones. (In [8] using a different
approach the authors consider as dominanttke0 terms for the Duffing example.)

Let us denote

a = [log (r — 10)] 7 T =a Xt — 1) = (t — 1) 10g" (t — t0) (2.4)

wherer is given by (2.3). We now substitute the Pair8ex-expansion into (2.1), witla
andT as above. Then

if [ even
m =

(2.3)
if / odd.

gy ~a" Y a7 qN(T) (2.5)
k>0
whereq® are the solutions of the Painkew-method (see appendix A). We require that,
in the limit
IT| — 0 IT| > |t — 1ol (2.6)
the terms in (2.5) are dominant. This asymptotic approximatiog (of is valid whené
goes to infinity sufficiently fast so that, when we insert (2.5) into (2.1), we can consider the

terms containing derivatives of as higher-order corrections at each step. In particular, it
is sufficient that

0 > pr%. (2.7)

Notice also that (2.6) and (2.7) form a set of compatible conditions.

Let us now consider the relations between the local formal expansiqipin (2.2)
and the one given in (2.5). Let us start from the teyfi, which satisfies the zeroth-order
Painlee equation

d2q©

= (@M =o. 2.8

gz — @) (2.8)

SinceT may be chosen to be as small as we like, we may consider the local expansion of
q© aroundT = 0 and we get

qOT) = Z C;O)Ti(jH”‘. (2.99)

Jj>0

If we insert(2.9a) into (2.5) we have that

” = ag; ji>0 (2.1()
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since
q(1) ~ (log (t — 10)) 71 ((t — 10) log7 (1 — 10))
= ago(t — t9)" + aps(t — to)m+r + h.o.t..

We have obtained an explicit relation between the coefficients of the local formal
expansion (2.2) and the coefficients of the formal solution of (2.8). This last equation
admits a first integral which is

1dg©” 1 o+

S — = 1 . 2.11

5 dT l—i—l(q ) m(r + Dagoaos (2.11)
In particular, from(2.10z) and (2.11), we get the following equation:

C}EO) = daop,1- (212)

This relation means that we are conjugating the local expansion (2.2) around the movable
critical point1o, to the global solution of (2.11), since (2.12) fixes the energy level of (2.11).
Then, if we pull back the singularity structure in tifieplane associated @/?, using (2.4),
we get an asymptotic approximation of the local structure; @ (see figures &) and
7(b)). In section 4, we will analyse an example in order to clarify these ideas.

Let us now consider the terms in (2.5) with> 1, again in the asymptotic limit (2.6),
(2.7). In order to achieve this, we insert the corresponding coefficients in the formal local
expansion of; ¥ (T, particular solutions of the Painléw-equations,

" (1) =) PTiDtm e> (2.%)
j>0
in ¢(z). Then, using the properties of the solutions of the Paitexmethod, equating the
coefficients in (2.2) and (2.7), it is easy to check that

M=q; j=0  k=1...k  wherei(k)=r. (2.10)

In fact as soon a& > k, new terms containing the logarithm appear (see appendix A) and,
in order to compensate them, we should take into account the terms containing derivatives
of & which we have neglected so far.

The good agreement between the singularity positions predicted by the asymptotic
expansion explained here and those numerically computed starting from (2.1) suggest that
(2.5) has to be considered as the first step in the local asymptotic expansion of the solutions
of (2.1) in the neighbourhood of a critical singularity. As shown in the figures 6 and 7, the
local singularity structure of these examples is highly non-trivial and the complicated local

structure is well described by the tegp ((r — o) Iog?l (t — 19)).

3. Convergence of the psi series

In this section (and in appendix B), for simplicity of notations, we consider the case in
which equation (2.1) reduces to

-1

G=q"+) ciq' +e(Fo(t) + Fi(t)q) (3.1)

j=0
and we show that the corresponding psi series (see equation (2.2)) actually converges in
certain sectors of the complex plane

In the more general case of equation (2.2) the estimates we give here are still valid

except that we have to estimate more carefully the coefficients in the Taylor expansion of
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the entire functiong; (). Indeed, we estimate from above the coefficief,ft@ in the Taylor
expansions of the entire functiod§(¢), j = 0, 1, with an appropriate constait. Such
estimates are not sufficient in order that the proof be self-consistent in the general case of
(2.2) and it is sufficient to estimate such terms wkfh ¢ with d > 1.

In any case, our estimates here are not optimal, since our main concern is to show the
consistency of the asymptotic approximation proposed in the previous section. Indeed, since
the psi series converges, we may resume its terms in the way proposed in the above section.
This is of course not a proof of the fact that there are actually secondary singularities on
the boundary of the convergence domain, but a first step towards it.

Let us denote

T =(t—1o)7 z =log(t — to) M=—E,7=2(l+1)
p p
whereg = 1 if [ is even,8 = 2 elsewhere. We start with the casereal. Then (2.2)
becomes

(3.2)

q(t) =Y hy@T"" (3.3)
N>0
where
hv(z)= Y ayz (3.4)
k47 j=N
is a polynomial of degreeN/r]. Of course
gt =>y e @V (3.5)
N=0
where
dn N +
gn(z) = dN + %h/\/(z).

When we substitute (3.3) and (3.5) in (2.1), fér= 0 we get

L'Bho—g (Mﬁ_l)go=hi)

[-1 -1
so thathg = ago, go = —D l)ho, as expected. IV > 1 we get the recursive relations
h§v+i(N+M)hN —gv=0
-1 3.6)
- N+ [—-1 21(l+1)h s @.
8N -1 n 8 8N 1—17 N=1IN
where
Pv= ) ]_[hk +Zc, > l_[hk LD DI 3.7)
ki+-+k=N i= j=0 kittkj= i= = 1ko+k1—
ki#N,i=1,..., N+(— J)M N+(/71)/4

Equation (3.6) may be rewritten in a compact form as
h), hy 0
Ay = 5 3.8
(gN)+ <8N> (PN) 3:8)

LN+ ) -1
A = < -1 _ ) . (39)
PTUAW -5 S0

where
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Notice that (3.8) becomes equation (A.9) if we consi@leas function ofz. The diagonal

form of Ay is Dy = diag[Z¥ + 1, 2% — r]. The eigenvalues are both positiveNf > 7.

The matrix which transformsly to Dy is

1 =1

Q=( 11 3’51) (3.10)
TI-1 31

so that

hy \ N _ ~O
(gN> ‘/_oo expAv (& Z)}(PN@)) o

= /m QexpDy (& —2)}Q7t (ﬁNO@)) dg N>7F  (3.11)

We now need an estimate on the growth/gf and gy as functions of¥N andz. Let us
choose the following norm for vectors and matrices:

lai, Il = n?c’;lxlaij|~

Then||QIl = [1Q7 Ml = 1, |l exp{Dy (€ — )} = expl(/] —r)(€ — 2)} and, using (3.11),
we get

I+1\°
max|hy|(2), |gn|(2)} < (z-1>

/j exp{(lﬁ_Nl — r) (€ — z)} | Py ()| 0g N>F7 z<0O. (3.12)

oo
In appendix B we prove that for any €]y*, 1[, wherey* = % there exist constants
0< M <1 andK > 1 such that
(K —Kz)7
max{|h , <M VN >1, Vz <O. 3.13
Xlhn[(2), [gnl(2)} N+ 1y 7 < (3.13)

Then it easily follows that the series (3.3) converges absolutely Kor- Kz)%r < 1lor
equivalently for
exp(—rz)
—x
There exists a uniqué < O such that equality holds in (3.14) which determines the
maximum convergence radius of (2.2).

Let us now consider complex convergence. In analogy with [14], let us define the sets

11—z < (3.14)

Go={teC:t—to=p’, p>0,v <6 <v+27}. (3.15)
If + € G,, then
/7] ,
at)=>">" b"log’ |t — 1ol " (3.16)
N>0 j=0

where
v N
bj( ) = Z aN_;k,k< .>(|9)k_].
k=; J

Since the form of the series is unaltered, the convergence proof is again the same and it
is possible to show absolute convergence in sectors ofribemplex plane of the form

t = |11 = pr1d?, where 2, < ¢ < L + 75,
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4. An example

In this section and in appendix C, we give some detailed computations for the following
equation:

j+qA+€eF@1)—qg?=0. (4.1)

Notice that the movable singularities for the unperturbed systes 0) are double poles.
The same kind of analysis is also possible for the following equation:

G+q(l+eF1)—¢°=0 (4.2)

for which the movable singularities are algebraic of orelér. Indeed, in this second case,
the corresponding zero Painkequation has a general solution which is the square-root of
a meromorphic function, according to a theorem by Briot and Bouquet.

Figures 6 and 7, refer to the case wheére) = sin(Q2z), but analogous results may also
be shown for more complicated equations like

G+ qA+esin(mn) +eg?sinit) —¢°> =0

which do not have periodic perturbations in time (see figuag)3(Analyticity is the essential
feature of the time-dependent coefficiedigr) in order that the local structure is the one
predicted by the computations in the previous sections.

We are going to analyse the behaviour around a movable singulgudtyd so, in the
following, both for (4.1) and (4.2), we substitufé with its Taylor expansion which we
suppose convergent in a convenient neighbourhood of a singularity

+00
F@y =) fit =)t (4.3)
k=0

Whene = 0, the integraly(r) of (4.1) may be locally represented as a Laurent expansion
around the movable time poles

q(t) = ar(t —19)"72 (4.4)

k=0

wherea; € R satisfy the following recursive relations:

k—1
[(2k — 2)(2k — 3) — 2aglazn = —az 2+ Y _ azjaz 2
= keN

axy-1=0

initialized by ap = 6. It is easy to check that the compatibility conditions are satisfied for
the resonance terms.

If we now try the same type of expansion whenr# 0, then the dominant behaviour
is still (r —10)72, but, due to the presence of the perturbative time-dependent term, the
compatibility condition for the resonance teug becomes

€2f12 1-— foé
4 2

Such a condition cannot in general be satisfied by a generic perturbatiésr whatever
value ofzp; this means that the Laurent series no longer represents a formal solution to our

equation.

+ef2( )+6€f4=0.
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If we now substitute the following series:

q(t) =Y a;(t — 10 [t — 10)°log (t — t0)}/

k,j=0

= Z arj(t — 1) %% log/ (t — t0) (4.5)

k,j>0

into equation (4.1), we get, for the resonance teggy the following compatibility equation:

Tagy = —aao + €(aso fo + azofi + azof2 + acofa) + 2az0a40 + a3, (4.6)

which assigns the value t@;, because the defining equationf, is identically satisfied.
Let us now proceed with the-method (A.2). The only possible choice of the optimal
exponent isn = —2 and we get the following sequence of differential equations:

d?q©
F(O)Ei— (0)220
a7z (™)
d?q®
FO = — 200, _
ar2 qq
2 (2
FO= dquz —2¢9¢@ — (g2 4+ 4O 4 ¢fqg©@ =0 4.7)
d2 (€))
FO = d‘;z — 2404 _ 2,0 4 @ 4 cfo® 4 faOT Z
w _ Pq© _ 9,0 k) _ (©) (k—1)
F= arz 29"7q Sig®™, ..., q"7, T)0 k>4
where, as in (2.4),
T = (t — tg) Iog?ls (t — 1p). (4.7a)

The first equation has7® as solution (not on the separatrix®(T — co, O, g3) being the
Weierstrass function, while the homogeneous part otAhgk > 1 is a Langé-type equation
(see [11]) whose solutions may be written in terms of the Weierstrass function and its
derivative, with polar singularities of order3, 4.

As pointed out in [6], the solutions of the homogeneous linear Fift, j > 1 do
not play any role for what concerns the singularity structure of the solutions, since the
singularities generated by them are compensated by singularities of the particular solutions
of the inhomogeneous part. So the only singularities appearing in the infinite expansion
q(¢) produced by the linear equations are those due to the solutions of their inhomogeneous
part.

So let us analyse the singularities which show up in the particular solutions of the
equationsF*, k > 1. A particular solution may be obtained with the method of variation
of constants and, as pointed out in the previous sections, we cannot exclude the presence
of movable critical points. In fact, there do necessarily appear movable logarithms in the
particular solution to equation

qu(G)

® —
Fr= dr?

—240g® L@ _ 24050 _2,@0® _ (432 4 cfa® | efig®T
+efoqPT? 4+ €fsqg VT3 + ef4gOT* = 0.

This can be easily checked by considering, for simplicity, the particular solutigA®f
along the separatrix

qOT) = 6(T — co) 2.
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The general solution of the homogeneous linear equation associaféd ko> 1 is then
g (T) = e1(T — c)* + co(T = o) 3
and the particular solution ofF® obtained with the method of variation of constants is

4 22
M [Egz(l +efo) + % + 66f4:| log(T — co)) + h.ot.. (4.8)
So, there does appear a logarithmic singularity with coefficient equaj;t¢see (4.6)). In
order to remove it, we should consider the trivial case of a constant perturbation. Such
logarithmic singularities also appear in the particular solutions outside the separatrix, since
(4.8) represents the first-order term of the perturbative expansio;fth) outside the
separatrix. (Notice that, contrary to what was claimed in [7] logarithmic singularities also
have to appear at the resonance perturbative order for the Duffing example, since their
equation falls in the class considered in this paper.)

Let us now consider the limit — 70) — O under the condition that the argument of the
logarithm is arbitrarily large in absolute value. Under such an assumption, we can neglect
all of the terms of the fornay; with k > 0, so that the recursive expansion simplifies to

g (T) =

J
(6j — 2)(6j — )ag; = Y _ ao jao,j—j- (4.9)

Jj1=0
On the other hand, if we substitute
(1) = q©(T)log™5 (1 — 1) (4.10)

and (4.8) into (4.1) then, in the asymptotic limit — zp) — 0 with |(t — #9)| < |T], the
dominant terms satisfy the following differential equation:

GO(T) — (@4 1) =0. (4.11)

Equation (4.11) is just the first equation given by thenethod. The first integral of (4.11)
is

1G)? - 1¢° =T, = —84aq:. (4.12)

This means that we are able to conjugate the local singularity structure gf#theolution
of (4.1) with the global singularity structure of th&T) solution of (4.11).

In figure 6@) we show the pull-back of the singularity nearestfte= 0 in the lattice
associated to (4.12), inverting.7a). Since the argument af — 7o) is determined up to
integer multiples of 2, it is clear from(4.7a) that we expect the appearancerot= 6
branches of singularities in the plane as the effect of the pull-back. As appears from
figure 6, the agreement between numerical integration of (4.1) and asymptotic approximation
explained above is quite good. In fact the structure of singularities of the integrated
equation (4.1) appears to depend on the one produced by pulling back the nearest singularity
to T = 0 in the lattice associated to (4.12) using transformation (4.10) betwed 7.
Moreover, the same kind of singularity structure also appears in the secondary branches.

5. A model for the global singularity structure

In this section we consider a simple model in order to justify the appearance of chimneys
in terms of a certain asymptotic approximation specified below. We also present in this
section some numerical analysis also on the global structure of the peaks.
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We have observed the appearance of such peaks in many examples in which we have
singled out as a common feature the exponential growth of the potential in the time direction
in which such structures are detected. Of course the peculiar shape of the peak depends on
the particular example considered and at present we do not have a general model in order
to explain their appearance and structure. We think in any case that the particular model
we present here sheds some light on this subject.

Let us consider the simplest possible model in which one sees the appearance of such
chimneys,

j = q — e exp(bt)q® (5.1)

where we takeb > 0 ande # 0 (fixed constant). Then we apply the following
transformation:

qt) = exp(—1)0(z) 7 = exp(2t) (5.2)
to (5.1). We then get the following equation fér.
O =—lez7 02 (5.3)

Whenb = 5, the asymptotic conjugated model is an integrable one in the Paisiense.
The corresponding equation is in fact

O+ Z@Z(z) =0

whose general solutio®(z) = 673(i§z — ¢o, 0, g3) is the Weierstrass function. The
singularities of ® are double poles disposed on a regular lattice with two fundamental
periods 2, 2w,. This lattice, through the transformatian = exp(2z), is pulled back
into a chimney of singularities which we show in figurebP( Then it is clear that the
singularities int of g are logarithmic in nature due to (5.2); moreover, the solution in this
case is explicit and is given by

q) =6exp—1P (ﬁf exp(2t) — cop, 0, gg) .
So the lattice of singularities dP(z) is squeezed towards theintegration path by the
above transformation at exponential rate.

In the caseb = 5, we may then also give a bound on the rate of approximation of
the singularities pulled back from (5.3) to the integration path. Indeed, let us consider, for
simplicity, the case in which the lattice of singularities associated to (5.3) is rectangular, and
denote the basic periods witBwi, 2iw,), with w1, w, € R. Choose a path along thereal
axis. Then the distance between the path and the singularities of the Igttie€nw;, + w,,
which are nearest to the path is constant and equal to

igﬂglz — 2yl = |w2|.
If we pull back the lattice of singularities using the transformation

z = exp(2t) Z, = exp(2t,)
we easily get that the distance between the corresponding points in the time plane is given
by

1+0(1) (5.4)

. 1| w2
inflt —t,|=—-|—
te]R| nl n‘4a)1

whereo(1) — 0 asn — oo. That is, the singularities of the model approach the integration
path at a rate which allows for infinite real-time analytic continuation of the solutions.
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Moreover, if one considers a slightly more general model
G =q— (1+ eexpbt))g” (5.5)

with b > 0, ¢ # 0 as before, then we may take (5.1) as its asymptotic approximation for
large real times (compare figuresa®@nd {)).

We now briefly describe some of the numerical analyses we made on model (4.1) and
in particular on the following equation:

§ = —q(1+ esin(r)) + ¢°. (5.6)

The peaks are obtained by integrating the equations starting from the time origin along a
path which lies in the real time axis up to the poirt 0) and then moving along increasing

or decreasing imaginary times fi = 7. Then, whatever the initial conditions, the degree

of V, R ande # 0 are, more and more singularities appear which look as if they approach
the integration path (see figures 1, 2aB(4(@), 5(@) and 9). Such chimneys also appear

if we make a certain number of turns around some local singularity and then move up (see
figure 8p)) and seem to appear independently of the choicg @fhatever the value of

(see figure &)).

In particular, we tried to check whether the ratio of approximation of singularities to
the integration path for model (5.6) had the same rate as that of model (5.1). Indeed, we
are convinced that such rate should depend only. ofhe major problem is that we cannot
control whether the ATOMFT program detects all interesting movable singularities along
a certain path. In this respect, a comparison with other numerical methods for detecting
singularities would be extremely interesting.

Under the assumption that we do not lose ‘too many’ singularities with ATOMFT,
tables 1 and 2 show that there is a scaling invariance as we clakgeping all other
guantities fixed. The ‘peak’ moves without changing its form towards the real time axis
ase increases. The right+) and the left(—) branches approach the integration path at a
negative rate, approximately proportionalio! (see the first column in tables 1 and 2) in
rough agreement with (5.4), for example (5.1).

Table 1. We plot the interpolated angular coefficients of the singularities= (3", #\") to

the left of the integration path versus legthe order of appearance of’ for various values of

¢ and for the same initial conditions(0) = 0.5, x(0) = 0 and the same time integration path
(along the real axis up to = 1, and then parallel to the imaginary time axis). The last line
refers to the case of figure 9, in which we make 20 turns around the first singularity along the
chimney before continuing in the imaginary direction.

Interpolated angular coefficients for left approximation

€ Iog(t,(e”) —10) Iog(tf”)) Iog(t,({”l) - t,({’)) Iog(tf"“) - t;")) log(r™ — )
104 —0.95 0.08 —1.86 —0.96 —0.96
103 —0.96 0.09 -1.88 —0.96 —0.96
102 —0.96 0.10 —1.89 —0.96 —0.96
0.1 —0.96 0.11 -191 —-0.95 —-0.95
1.0 —0.96 0.13 —1.91 —0.95 —0.95
160.0 —0.999 0.21 —-1.97 —0.99 —0.99

0.01* —0.90 0.09 -1.78 —0.90 —0.90
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Table 2. We plot the interpolated angular coefficients of the singularities= (t,(e"), t;")) to

the right of the integration path versus bogthe order of appearance df for various values

of € and for the same initial conditiong0) = 0.5, x(0) = 0 and the same time integration path
(along the real axis up to = 1, and then parallel to the imaginary time axis). The last line
refers to the case of figure 9, in which we make 20 turns around the first singularity along the
chimney before continuing in the imaginary direction.

Interpolated angular coefficients for right approximation

€ log(t>” — 10) log(z{") log( 4t — 1) log("™ — 1) log(r™ — (™)
108 —0.99 0.06 —-2.02 —0.93 —-0.93
103 -0.81 0.07 -1.62 -0.81 -0.81
1072 —0.96 0.08 —1.64 —-0.84 —0.84
0.1 —-0.99 0.11 -1.87 -0.92 -0.92
1.0 —0.86 0.11 —-1.60 —0.85 —-0.85
160.0 —0.987 0.21 —-2.05 -0.97 -0.97
0.01* —0.96 0.10 -1.72 —0.93 —0.93

6. Conclusions

The local asymptotic analysis presented in this paper shows a commonly expected behaviour
of the singularities of all Hamiltonian systems perturbed with time-analytic perturbations
in class (1.1). In particular, we have proposed an asymptotic expansion of the solutions of
(1.1) modelled on the Painléw-method where we take the parameteiself as a function

of time.

In this way, we can get an asymptotic conjugation between the local singularity structure
of the original model (1.1) and the global singularity structure of the zeroth Pé&ielgwation
using transformation (2.4). Notice that our model contains as a subcase the results presented
in [8].

Numerically there is good agreement between the theoretical predictions obtained with
perturbative expansions and asymptotic approximations, in the cases where the regsonance
is an integer number.

The cases in which is rational are even more delicate. In fact, the global structure
of the conjugated system (2.8) is no longer integrable in the sense that even at zeroth
order, the solutio © is not uniformizable. That is, the conjugated system already exhibits
an infinite-sheeted Riemann structure. In order to see numerically the local ‘branches’ of
singularities, we have to move at a small but finite distance from the singularity. So we
think that numerical problems may show up due to the extreme difficulty of controlling the
way in which we change the sheet, integrating the equation along complicated paths. We
think that more complicated cases such as these deserve study in themselves.

In any case, we still lack an analytic proof of the convergence of the method and of
the fact that secondary singularities should appear and form the structures shown in this
paper. In section 3, as a first step towards this goal we have shown that the psi series
converges absolutely. Unfortunately the convergence proof presented here and analogous
proofs considered in other classes of examples (see [14]) do not allow for explicit estimates
of the radius of convergence.

In any case, we are convinced that the singularities we detect numerically are on the
boundary of the domain of convergence of the psi series. We also believe thatrtbthod
gives the optimal way in which one should resum the series in order to prove the appearance
of secondary singularities. Of course psi series are extremely complicated objects and it is
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not known in general that singularities appear on the boundary of the convergence domain
(see [11] for instance).

In section 5 we have considered the global singularity structure associated to the
solutions of (1.1) in the case in which there is exponential growth in time of the potential
in some directions. We conjecture that in this case, one has to expect the appearance of
‘barriers’ of singularities integrating (1.1) in directions parallel to the exponential growth of
the potential. We got numerical evidence of this conjecture in all the examples considered.

We have proposed here a simple basic example which may be considered as the simplest
model for further investigation on the nature and structure of these ‘chimneys’. The model
considered here allows for infinite-time analytic continuation of the solution since the
singularities approach the path of integration at sufficiently low speed. We are going to
investigate this and other models in order to construct an asymptotic approximation for
large times. We are convinced that the structure of the ‘chimneys’ is strictly related to
the asymptotic properties in the time of the potential, more than with the integrability or
non-integrability of the model.

Preliminary numerical investigations on a restricted class of models show that the form
of the peaks depends on the system under consideration, and depends very little on the
value of the perturbation parametefin a certain range of). The peaks look self-similar
and, as grows, shift towards the real axis without changing of form.

When deg’ = 2, the singularities move towards the integration path at roughly
speed, where is the order of appearance of the singularity in the chimney. Such results
are in agreement with what is evidenced by our simple model.

Finally, the methods explained here about the local analysis of the time singularities
may be applied in principle also to a more general class of Hamiltonian systems in which
‘H is algebraic inp, rational ing and analytic ir¢, since Painle& «-method still works.
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Appendix A

Let us rewrite (2.1) as
F(g,t) =0. (A1)

To (A.1), we may formally associate an infinite sequence of equations obtained by using
the following algorithm originally introduced by Painkevin order to get the necessary
conditions for Painle® integrability (see [14] and [11]).

Let 7o € C (in our class of examples there are no fixed singularitied)e a non-zero
complex parameter, and let us consider the following perturbation:

400 +00
a#0:t=tyg+aT g=ao" Zai(k)q(k) CF=q Zai(k)]:(k) (A.2)
k=0 k=0
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wherem is rational and has to be chosen optimallys constant and is totally determined by
m; i (k) are sequences of rational numbers determined by imposing compatibility conditions
in the recursion relations in (A.2).

Then, at perturbation order zero, all coefficients of equafiéh are constant and, for a
suitable choice ofiz, only a few terms survive. Following [7], we call a simplified equation,
the equation of order zero associated to a given perturbation

FO@G®) =o0. (A.3)

The successive steps of themethod consist of:

(1) determining all sequences such that the perturbation (A.2) verifies (A.3);

(2) finding the general solution of the simplified equation;

(3) defining, for eachk > 1, ¢¥ as a particular solution of equatigi® = 0.

In our setting, 7® k > 1 is linear with the same homogeneous non-homogeneous
parts depending on the previous tergi8, ..., g%~ and onT. Of course in the Painlév
integrable cases—which are not present in our setting—we havegthats free from
movable critical points, in order to satisfy stability for all sequences of perturbed equations.

It is easy to realize that the right choice mfis nothing other than the rational power
corresponding to the dominant behaviour of the movable singular points, that is

2
m=—-——— A4
1 (A.4)
while the indices (k) = % are as in (2.3). Moreover, the dominant part of the solutions
of g™ (T) around the movable singularitiesdgso7'®+" up to orderk which corresponds
to the so-called resonance index. In our case, the resonance is

[+1

r= 21 —1 (A.5)
We now prove that the dominant term of the corresponding particular solution to equation
F) presents a logarithmic singularity of tyd@@*" log(T'), unless certain very peculiar
conditions in the dependence on time Bfz, g) are satisfied. These conditions are, of
course, exactly the same as those which have to be satisfied in (2.3) in ordey that0
if j #0.

For simplicity, we check the appearance of logarithmic singularities for the first time at

the indexi (k) = r when (a.2) is initialized by the ‘separatrix’ solutigtf’ (T') = ¢(T —11)",
of FO = §© — Ag©' = 0, wherec!~* = =1 and, depends on the initial condition.
Indeed, if we prove the appearance of logarithmic time singularities at in@ex= r for
the first time in this particular case, then logarithmic singularities have to appear, for the
first time, at the same recursive orderalso in the generic one since, locally, the dominant
behaviour of such generic solutions near the singularities is just the exact behaviour of the
‘separatrix’ solution. Let

G=q +W(g.t,€) (A.6)

whereW is algebraic of degree at mdst 1 in ¢ and analytic irr. ThenF© = §© —4©' —
0 has separatrix solution

1
20+ 2 | 2
Oy =5 T —1) 71 A7
4O(T) [(l_l)z} (T — ) (A7)
equationsF® = 0, k > 1, are all linear with homogeneous part

w—1g""tw=0 (A.8)
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and have basis of solutions given by (T) = (T — tl)_% andwy(T) = (T — tl)ﬁ. The
complete equation at ordér> 1 is
§® —1q) q® =Puq?,....q" V. T, 0 (A.9)

with P, a homogeneous polynomial of degree+ i(k) — 2 in the ¢!’ and in fj(”, the
coefficients of the Taylor expansion of the time-dependent coefficiens of (2.2).

The particular solutions;”(7) can be obtained using the method of variation of
constants

T (2 T (1
q;” Pk q; Pk
gl (T) = —q>(T) f T g / K

A
Whereq,fl) and q,ﬁz) are the two independent solutions of the corresponding homogeneous

equation listed above and
A(T) = ¢ (T)¢2(T) — ¢ (T)qP(T) = @ + 1)/ — DgP(©0)¢?(0)

is the Wronskian. o " " "
Fork <k, qp(T) = (T—t)"% [T (T =) +(T =) [T (T =) with puf” < —1
and,? > 0 and fork = k,

-1
o (1) =59 @47 ©

T T
><75,;(0)[ — (T — )7 / (T —t) L+ (T — 1)1 / (T — tl)Zj*i].

Then logarithmic singularities are absent if and onIﬂ'f(O) = 0. This ends the proof since
this last condition cannot be satisfied by a generic non-trivial time-analytic perturlfation
independently ofy. Notice thatP, = P;(0)(T — t;)"*®~2 in the separatrix case.

Appendix B

Using the notations of section 3, below we show by induction that the following proposition
is true.

Proposition B.1. For all/ > 2, let us define

L. =2
L
Then,Vy €]y*, 1] it is possible to find constants© M < 1 andK > 0 such that
(K —Kk2)7”
max{|h , <M-—— VN >1,V 0 B.1
Xlhn (@), [gn(2)1} (N +1) z < (B.1)

wherehy(z) andgy(z) are given by (3.8).

The casd = 3 and Fy(¢+) = 0 (Duffing equation) has been considered in [14]. Notice
that the optimal exponent in (B.1) js*. Indeed, in that cas& = K (y, M) is the smallest
possible. We believe that it is possible, in the generic case, to achievaut this requires
more delicate estimates than those presented here. Actually in [14], the authors have proved
that in general it is possible to take= % if I =3 andF; = 0. In any case neither proof
produces explicit estimates &f.

Proof of proposition B.1. In analogy with [14], we divide the proof into two parts. First,
from lemma B.2, we directly estimate the filStterms with (B.1), ifM and K are chosen
conveniently. The second part is by induction Snand fixesy*.
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Lemma B.2. Let7 > 1,y > 0 be fixed and lefCy(z) = 315 cVz' be any sequence of
polynomials withN > 1. Then, for allN > r and for all 0< M < 1 there existsk > 1
such that

M N _
|ICN(Z)||<m(K—KZ)7 Vz<0, N=1,...,N.

Lemma B.2 is analogous to lemma 4.3 in [14] and its proof is trivial. We may apply
lemma B.2 tolCy = hy, gy SO that (B.1) is true fotv = 1,..., N. We now proceed by
induction starting with an estimate aby. The following inequality easily follows from
(3.7) using estimate (b.1) true far< N:

1Py < MU (K —K2)T )" H(k +1)77

kyi+-- j‘l’kl =N i=

—}-ZCJM](K KZ)N+<1 o Z H(k + 177 +f§g)mﬁ

j=0 kitetkj= i=1
N+(— J)M
ﬂ(NHl D) =y / 1 —y
N+(-Du—"Flkg _

+M Z K-k (N+(l—1)u— k0+1) .
(B.2)
First, sinceFY(¢), j = 0,1 are entire functions, we may estima,fé/) < K, Yk > 0,
Jj =0, 1. Moreover, it is not restrictive to suppose< K, j =0,...,/ —1. The major

concern is in estimating sums of the form

ANN. = Y H(k +1)77 j=1,...,1, N>1. (B.3)

kq+-- +k/_N i=

If j = 0 the sum reduces to a constant term widén= —I/u and is zero otherwise. If
j=1, AN, )=(N+17. If j =2 andy < 1, we easily get that

¥
A(N,2) =2 Z(k1 + D) TV(N+1—k)
k=0

N 1-2y
<2 <2 + 1) / de(1—x®)77 < K(N +272, (B.4)
0

In general, ifj > 2, we have that
_ KW+ 2L(N +1)I-nu-2
(1-y)i-2

We are now able to estimate (B.2), using (B.3), (B.4) and (B.5):
1

j—2
A(N, j) < A(N, 2)(Z(k+1) V) (B.5)

|13N| < W(N + 2)172)/(N + 1)(17)/)(172)(1( . Kz)g

N+(1 N+(I-Dp

+K N1 + K(N + 1) "(K —Kz)

MI(N +1)A-nG-2 Nz
A=y K=k

TKA(N +2)% ZVZ

Jj=



168 S Abenda

N N+(@-Dp =Dk
+K +KM(N +1)77 Z(K_KZ) by _( ﬁ;o
ko=0

< (I+2M'K
T 1 —y)i?
N+(=Dp

+KM(N+1)7"*" YK —Kz)~ 7 . (B.6)

(N + 27N + DIk — Kz)7

We now use the following technical lemma (see also [14]).

Lemma B.3. Let K > 0. Then,VN > r andVz < 0 the following inequality holds:

s BN s (K —Kz)*
1(z) =/ exp{(l_1 —r) (& — g)} (K —Kg&)7 dé < TWNoh & (B.7)

—0Q

2(1%2-1 1+2
wheres; = (I — 1)%

Proof of lemma B.3. Using integration by parts, as in [13], we get

1@ =k — ko)t (PN - NK k — kot PN -
(z) = (K — z)r(l_l—r> + F( —Kz)7 <l_1—r> 4+
- -[¥]2
N (N - 1) (N - [N} + 1) KV(K — Kz)7 7] (ﬁN —r)
r\r r r -1
~[¥]-1
() (L)
r\r r r -1
x/Z exp{(‘B_Nl—r) (g—z)}(K—Ks)?[?H. (B.8)

Since¢ €] — oo, z[, we get

) N_[N — 47 %]71
/_ eXp{(lﬂ_Nl —r> & —z)}(K _ ke &K ,i/Z) .

Then (B.8) becomes

v { BN -1 N [ BN -t

N —j J
_ _i{ BN ! N
1-2)7Y1 1-2)7/ | — — — -

x(1-2) [ DI <l_1 r) E(r ,ﬂ}

20+D\1-1

B 1+3

from which we immediately get estimate (B.7). We now substitute (B.6) into (3.12) and
use (B.7), and we get

<(K—K2)7 (BN =20+ 1)1 - 1) {1+ (1+

(I +28MK D) N
max(hy(2), gy (2)} < u_iyly_z(zv + DA (K — K 7))
TKM§ (N +D V(K — Kz) 7 ™. (B.9)

The proof of proposition B.1 is now finished since it is sufficient to chopse % in

(B.9) in order that (B.1) is satisfied fa¥ sufficiently big. Indeed, the second term in (B.9)
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is dominated by the first one. In order to ensure thatyfoe y* our estimates are still
valid, it is sufficient that
21+ 2§ M' 1K
_—— < 1
(L—y"i-2

Appendix C

Here we give some details on the properties of the solutions of the infinite set of equations
obtained with thex-method in the example considered in section 3.
In the case of equation (4.1), the homogeneous linear equatioks>fdr are of Lang
type:
dPw
dz?
where P is the elliptic Weierstrass function with poles an@ + 2m’«’, for the choice
n=1hr=0.
From the Fuchsian theory we easily obtain the two independent solutions of the
homogeneous equation:

w1(z) = (z — 2mw — 2m' @ )°W(z)

whereW(z) is analytic in the domain of the pointido + 2m’e’ and is different from zero
at that point.
The second solution is

w()—ch/L
2= | a2

The two solutions have, respectively, zeros of order 3 and poles of order 2. In our case,
the solutions may also be expressed in the following way:

—(h+nn+DHPE)w=0

wn = exp(-z¢an 7S LY
wa = expCzcan

wherea is the solution ofP(a) = h.

Let us now consider what are the singularities of the complete solution of the
inhomogeneous equations. We recall that in order to satisfy the necessary conditions for
Painlewe integrability using the:-methods we have to require thg is free from movable
critical points and that the particular solutions of the inhomogeneous equations (4.17) are
also free from movable critical points. In particular, in order to satisfy Paintonditions
in our case we should impose that the particular solutions of (4.17) do not contain other
singularities than double poles. But this cannot be trué(f) is not a trivial constant
perturbation.

In fact, using the method of variation of constants, the particular solution may be written

as
t (2 t (D)
q;” Sk q; Sk
gl (1) = —61151)(”/ AT q1§2>(t)f A

whereg andg® are two independent solutions of the homogeneous equation and

AWM = ¢ 047 1) — g7 D¢ (1) = —3gs
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is the Wronskian. Then, by considering the leading behaviour of the solutighg)

and ¢@(r) we can show that a logarithmic singularity appears necessary at the level of
the particular solution relative to the sixth equation which represents the analogue of the
resonance condition of the local series expansions. This can be easily checked for the case
of the separatrix solutions where we get

gy =@t -  qupn=@t-c® A=-T
Then the particular solutions of the inhomogeneous equations are
g1 =0
g (1) = J(@ + €fo)
a4, (1) = 3efut

(% _ (w+€f0)2 _ 2 3ef> 2 €faco Efzcg
q, (t)—740 (t —co)*+ 5t 5 t+ 10

<5><r)—ef1<w+efo>[( _§°) ;(())(I—Co)z]

9 3 3
+ef2 |:(l —c0)® + fCo(t — o)+ —cé(t —co) + 620]

_ . \A gt €2
g0 =" f df([fz(w+€fo)+ fl}fz(f—Co)3+66f4f4(f—60)5)

33 2
+7(t 7CO) /d([fz(a)—kef)—i- L{li|

x12(1 — c0)? + Befurt(r — C0)2>

(l—Co)4 €f2 e ff
7 |:( +efo) + —— 7]

In the case of (4.2 = —2 ands = —3 >andg@() = /v wherey is the elliptic function
solution of the following differential equation:

.2
.Y 3

- — =2y°=0.
14 2y Y

+ 6€f4] log(t — co).

Along the separatrix the solution reducesj@) = \/g(t_lm). The linear homogeneous

differential equations fok > 1 admit of the foIIowing solutions:

Ul([)_§7+ \/> UZ()—7

and have algebraic branching points of orée@md—é respectively. Along the separatrix

such homogeneous solutions reducevitt) = (r — co)g and vo(t) = (t — co)*’g. As
expected, logarithmic singularities appear from the particular solutions of the differential
equationF®. Indeed, in the ‘separatrix’ case

5 1
t—co)? (3)\*
q;6>=(4€°)2(4) efilog(t —co) + - -

As before, in order to exclude the appearance of such logarithmic singulariﬂg@,imve
should require that the perturbatidt(z) is trivially constant. Moreover, also in this case,
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such a solution as (A.2) is the first-order expansion term of the particular solution outside
the separatrix and so there does follow that one expects logarithmic singularities in the
solutions of the associated system of equations (4.7).
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